x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
x=0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
10x^{2}-65x+0=0
0 നേടാൻ 0, 75 എന്നിവ ഗുണിക്കുക.
10x^{2}-65x=0
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x\left(10x-65\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=\frac{13}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 10x-65=0 എന്നിവ സോൾവ് ചെയ്യുക.
10x^{2}-65x+0=0
0 നേടാൻ 0, 75 എന്നിവ ഗുണിക്കുക.
10x^{2}-65x=0
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x=\frac{-\left(-65\right)±\sqrt{\left(-65\right)^{2}}}{2\times 10}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 10 എന്നതും b എന്നതിനായി -65 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-65\right)±65}{2\times 10}
\left(-65\right)^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{65±65}{2\times 10}
-65 എന്നതിന്റെ വിപരീതം 65 ആണ്.
x=\frac{65±65}{20}
2, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{130}{20}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{65±65}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 65, 65 എന്നതിൽ ചേർക്കുക.
x=\frac{13}{2}
10 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{130}{20} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{0}{20}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{65±65}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 65 എന്നതിൽ നിന്ന് 65 വ്യവകലനം ചെയ്യുക.
x=0
20 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=\frac{13}{2} x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
10x^{2}-65x+0=0
0 നേടാൻ 0, 75 എന്നിവ ഗുണിക്കുക.
10x^{2}-65x=0
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{10x^{2}-65x}{10}=\frac{0}{10}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{65}{10}\right)x=\frac{0}{10}
10 കൊണ്ട് ഹരിക്കുന്നത്, 10 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{13}{2}x=\frac{0}{10}
5 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-65}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{13}{2}x=0
10 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\left(-\frac{13}{4}\right)^{2}
-\frac{13}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{13}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{13}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{169}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{13}{4} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{13}{4}\right)^{2}=\frac{169}{16}
x^{2}-\frac{13}{2}x+\frac{169}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{13}{4}=\frac{13}{4} x-\frac{13}{4}=-\frac{13}{4}
ലഘൂകരിക്കുക.
x=\frac{13}{2} x=0
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{13}{4} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}