പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

10x^{2}-15x+2=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 10\times 2}}{2\times 10}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 10 എന്നതും b എന്നതിനായി -15 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 10\times 2}}{2\times 10}
-15 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225-40\times 2}}{2\times 10}
-4, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{225-80}}{2\times 10}
-40, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{145}}{2\times 10}
225, -80 എന്നതിൽ ചേർക്കുക.
x=\frac{15±\sqrt{145}}{2\times 10}
-15 എന്നതിന്‍റെ വിപരീതം 15 ആണ്.
x=\frac{15±\sqrt{145}}{20}
2, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{145}+15}{20}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{15±\sqrt{145}}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15, \sqrt{145} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{145}}{20}+\frac{3}{4}
20 കൊണ്ട് 15+\sqrt{145} എന്നതിനെ ഹരിക്കുക.
x=\frac{15-\sqrt{145}}{20}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{15±\sqrt{145}}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15 എന്നതിൽ നിന്ന് \sqrt{145} വ്യവകലനം ചെയ്യുക.
x=-\frac{\sqrt{145}}{20}+\frac{3}{4}
20 കൊണ്ട് 15-\sqrt{145} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{145}}{20}+\frac{3}{4} x=-\frac{\sqrt{145}}{20}+\frac{3}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
10x^{2}-15x+2=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
10x^{2}-15x+2-2=-2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
10x^{2}-15x=-2
അതിൽ നിന്നുതന്നെ 2 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{10x^{2}-15x}{10}=-\frac{2}{10}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{15}{10}\right)x=-\frac{2}{10}
10 കൊണ്ട് ഹരിക്കുന്നത്, 10 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{3}{2}x=-\frac{2}{10}
5 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-15}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{3}{2}x=-\frac{1}{5}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{5}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{3}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{5}+\frac{9}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{29}{80}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{5} എന്നത് \frac{9}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{4}\right)^{2}=\frac{29}{80}
x^{2}-\frac{3}{2}x+\frac{9}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{29}{80}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{4}=\frac{\sqrt{145}}{20} x-\frac{3}{4}=-\frac{\sqrt{145}}{20}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{145}}{20}+\frac{3}{4} x=-\frac{\sqrt{145}}{20}+\frac{3}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{4} ചേർക്കുക.