പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=19 ab=10\times 6=60
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 10y^{2}+ay+by+6 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,60 2,30 3,20 4,15 5,12 6,10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 60 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=4 b=15
സൊല്യൂഷൻ എന്നത് 19 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(10y^{2}+4y\right)+\left(15y+6\right)
10y^{2}+19y+6 എന്നത് \left(10y^{2}+4y\right)+\left(15y+6\right) എന്നായി തിരുത്തിയെഴുതുക.
2y\left(5y+2\right)+3\left(5y+2\right)
ആദ്യ ഗ്രൂപ്പിലെ 2y എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5y+2\right)\left(2y+3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5y+2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
10y^{2}+19y+6=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
y=\frac{-19±\sqrt{19^{2}-4\times 10\times 6}}{2\times 10}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-19±\sqrt{361-4\times 10\times 6}}{2\times 10}
19 സ്ക്വയർ ചെയ്യുക.
y=\frac{-19±\sqrt{361-40\times 6}}{2\times 10}
-4, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-19±\sqrt{361-240}}{2\times 10}
-40, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-19±\sqrt{121}}{2\times 10}
361, -240 എന്നതിൽ ചേർക്കുക.
y=\frac{-19±11}{2\times 10}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{-19±11}{20}
2, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=-\frac{8}{20}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, y=\frac{-19±11}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -19, 11 എന്നതിൽ ചേർക്കുക.
y=-\frac{2}{5}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-8}{20} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
y=-\frac{30}{20}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, y=\frac{-19±11}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -19 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
y=-\frac{3}{2}
10 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-30}{20} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
10y^{2}+19y+6=10\left(y-\left(-\frac{2}{5}\right)\right)\left(y-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -\frac{2}{5} എന്നതും, x_{2}-നായി -\frac{3}{2} എന്നതും പകരം വയ്‌ക്കുക.
10y^{2}+19y+6=10\left(y+\frac{2}{5}\right)\left(y+\frac{3}{2}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
10y^{2}+19y+6=10\times \frac{5y+2}{5}\left(y+\frac{3}{2}\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{5} എന്നത് y എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
10y^{2}+19y+6=10\times \frac{5y+2}{5}\times \frac{2y+3}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{3}{2} എന്നത് y എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
10y^{2}+19y+6=10\times \frac{\left(5y+2\right)\left(2y+3\right)}{5\times 2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{5y+2}{5}, \frac{2y+3}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
10y^{2}+19y+6=10\times \frac{\left(5y+2\right)\left(2y+3\right)}{10}
5, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
10y^{2}+19y+6=\left(5y+2\right)\left(2y+3\right)
10, 10 എന്നിവയിലെ 10 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.