x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-\frac{3}{10}=-0.3
x=1
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-7 ab=10\left(-3\right)=-30
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 10x^{2}+ax+bx-3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-30 2,-15 3,-10 5,-6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=3
സൊല്യൂഷൻ എന്നത് -7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(10x^{2}-10x\right)+\left(3x-3\right)
10x^{2}-7x-3 എന്നത് \left(10x^{2}-10x\right)+\left(3x-3\right) എന്നായി തിരുത്തിയെഴുതുക.
10x\left(x-1\right)+3\left(x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ 10x എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-1\right)\left(10x+3\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=1 x=-\frac{3}{10}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-1=0, 10x+3=0 എന്നിവ സോൾവ് ചെയ്യുക.
10x^{2}-7x-3=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 10 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി -3 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10\left(-3\right)}}{2\times 10}
-7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-40\left(-3\right)}}{2\times 10}
-4, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{49+120}}{2\times 10}
-40, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{169}}{2\times 10}
49, 120 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-7\right)±13}{2\times 10}
169 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{7±13}{2\times 10}
-7 എന്നതിന്റെ വിപരീതം 7 ആണ്.
x=\frac{7±13}{20}
2, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{20}{20}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{7±13}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, 13 എന്നതിൽ ചേർക്കുക.
x=1
20 കൊണ്ട് 20 എന്നതിനെ ഹരിക്കുക.
x=-\frac{6}{20}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{7±13}{20} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് 13 വ്യവകലനം ചെയ്യുക.
x=-\frac{3}{10}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{20} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=1 x=-\frac{3}{10}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
10x^{2}-7x-3=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
10x^{2}-7x-3-\left(-3\right)=-\left(-3\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.
10x^{2}-7x=-\left(-3\right)
അതിൽ നിന്നുതന്നെ -3 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
10x^{2}-7x=3
0 എന്നതിൽ നിന്ന് -3 വ്യവകലനം ചെയ്യുക.
\frac{10x^{2}-7x}{10}=\frac{3}{10}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{7}{10}x=\frac{3}{10}
10 കൊണ്ട് ഹരിക്കുന്നത്, 10 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{7}{10}x+\left(-\frac{7}{20}\right)^{2}=\frac{3}{10}+\left(-\frac{7}{20}\right)^{2}
-\frac{7}{20} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{7}{10}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{7}{20} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{7}{10}x+\frac{49}{400}=\frac{3}{10}+\frac{49}{400}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{20} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{7}{10}x+\frac{49}{400}=\frac{169}{400}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{3}{10} എന്നത് \frac{49}{400} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{7}{20}\right)^{2}=\frac{169}{400}
x^{2}-\frac{7}{10}x+\frac{49}{400} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{7}{20}\right)^{2}}=\sqrt{\frac{169}{400}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{7}{20}=\frac{13}{20} x-\frac{7}{20}=-\frac{13}{20}
ലഘൂകരിക്കുക.
x=1 x=-\frac{3}{10}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{7}{20} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}