A എന്നതിനായി സോൾവ് ചെയ്യുക
A=\frac{1}{\left(x-1\right)^{3}}
x\neq 1
x എന്നതിനായി സോൾവ് ചെയ്യുക
x=1+\frac{1}{\sqrt[3]{A}}
A\neq 0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
1=A\left(x^{3}-3x^{2}+3x-1\right)
\left(x-1\right)^{3} വികസിപ്പിക്കാൻ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
1=Ax^{3}-3Ax^{2}+3Ax-A
x^{3}-3x^{2}+3x-1 കൊണ്ട് A ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
Ax^{3}-3Ax^{2}+3Ax-A=1
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\left(x^{3}-3x^{2}+3x-1\right)A=1
A അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(x^{3}-3x^{2}+3x-1\right)A}{x^{3}-3x^{2}+3x-1}=\frac{1}{x^{3}-3x^{2}+3x-1}
ഇരുവശങ്ങളെയും x^{3}-3x^{2}+3x-1 കൊണ്ട് ഹരിക്കുക.
A=\frac{1}{x^{3}-3x^{2}+3x-1}
x^{3}-3x^{2}+3x-1 കൊണ്ട് ഹരിക്കുന്നത്, x^{3}-3x^{2}+3x-1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
A=\frac{1}{\left(x-1\right)^{3}}
x^{3}-3x^{2}+3x-1 കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}