x എന്നതിനായി സോൾവ് ചെയ്യുക
x=18y-\frac{23}{4}
y എന്നതിനായി സോൾവ് ചെയ്യുക
y=\frac{x}{18}+\frac{23}{72}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{1}{2}x-9y=-\frac{23}{8}
നെഗറ്റീവ് ചിഹ്നം എക്സ്ട്രാക്റ്റ് ചെയ്യുന്നതിലൂടെ, \frac{-23}{8} എന്ന അംശം -\frac{23}{8} എന്നായി പുനരാലേഖനം ചെയ്യാവുന്നതാണ്.
\frac{1}{2}x=-\frac{23}{8}+9y
9y ഇരു വശങ്ങളിലും ചേർക്കുക.
\frac{1}{2}x=9y-\frac{23}{8}
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{9y-\frac{23}{8}}{\frac{1}{2}}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഗുണിക്കുക.
x=\frac{9y-\frac{23}{8}}{\frac{1}{2}}
\frac{1}{2} കൊണ്ട് ഹരിക്കുന്നത്, \frac{1}{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x=18y-\frac{23}{4}
\frac{1}{2} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -\frac{23}{8}+9y ഗുണിക്കുന്നതിലൂടെ \frac{1}{2} കൊണ്ട് -\frac{23}{8}+9y എന്നതിനെ ഹരിക്കുക.
\frac{1}{2}x-9y=-\frac{23}{8}
നെഗറ്റീവ് ചിഹ്നം എക്സ്ട്രാക്റ്റ് ചെയ്യുന്നതിലൂടെ, \frac{-23}{8} എന്ന അംശം -\frac{23}{8} എന്നായി പുനരാലേഖനം ചെയ്യാവുന്നതാണ്.
-9y=-\frac{23}{8}-\frac{1}{2}x
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{2}x കുറയ്ക്കുക.
-9y=-\frac{x}{2}-\frac{23}{8}
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{-9y}{-9}=\frac{-\frac{x}{2}-\frac{23}{8}}{-9}
ഇരുവശങ്ങളെയും -9 കൊണ്ട് ഹരിക്കുക.
y=\frac{-\frac{x}{2}-\frac{23}{8}}{-9}
-9 കൊണ്ട് ഹരിക്കുന്നത്, -9 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=\frac{x}{18}+\frac{23}{72}
-9 കൊണ്ട് -\frac{23}{8}-\frac{x}{2} എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}