പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

36x^{2}+12x+1
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=12 ab=36\times 1=36
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 36x^{2}+ax+bx+1 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,36 2,18 3,12 4,9 6,6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 36 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=6 b=6
സൊല്യൂഷൻ എന്നത് 12 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(36x^{2}+6x\right)+\left(6x+1\right)
36x^{2}+12x+1 എന്നത് \left(36x^{2}+6x\right)+\left(6x+1\right) എന്നായി തിരുത്തിയെഴുതുക.
6x\left(6x+1\right)+6x+1
36x^{2}+6x എന്നതിൽ 6x ഘടക ലഘൂകരണം ചെയ്യുക.
\left(6x+1\right)\left(6x+1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 6x+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(6x+1\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
factor(36x^{2}+12x+1)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(36,12,1)=1
കോഎഫിഷ്യന്‍റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
\sqrt{36x^{2}}=6x
36x^{2} എന്ന ലീഡിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\left(6x+1\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്‍റെ സ്‌ക്വയർ ആണ്.
36x^{2}+12x+1=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2\times 36}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-12±\sqrt{144-4\times 36}}{2\times 36}
12 സ്ക്വയർ ചെയ്യുക.
x=\frac{-12±\sqrt{144-144}}{2\times 36}
-4, 36 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{0}}{2\times 36}
144, -144 എന്നതിൽ ചേർക്കുക.
x=\frac{-12±0}{2\times 36}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-12±0}{72}
2, 36 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
36x^{2}+12x+1=36\left(x-\left(-\frac{1}{6}\right)\right)\left(x-\left(-\frac{1}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -\frac{1}{6} എന്നതും, x_{2}-നായി -\frac{1}{6} എന്നതും പകരം വയ്‌ക്കുക.
36x^{2}+12x+1=36\left(x+\frac{1}{6}\right)\left(x+\frac{1}{6}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
36x^{2}+12x+1=36\times \frac{6x+1}{6}\left(x+\frac{1}{6}\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{6} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
36x^{2}+12x+1=36\times \frac{6x+1}{6}\times \frac{6x+1}{6}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{6} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
36x^{2}+12x+1=36\times \frac{\left(6x+1\right)\left(6x+1\right)}{6\times 6}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{6x+1}{6}, \frac{6x+1}{6} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
36x^{2}+12x+1=36\times \frac{\left(6x+1\right)\left(6x+1\right)}{36}
6, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
36x^{2}+12x+1=\left(6x+1\right)\left(6x+1\right)
36, 36 എന്നിവയിലെ 36 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.