മൂല്യനിർണ്ണയം ചെയ്യുക
x-0.725
വികസിപ്പിക്കുക
x-0.725
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
0.4+x-\frac{8+1}{8}
8 നേടാൻ 1, 8 എന്നിവ ഗുണിക്കുക.
0.4+x-\frac{9}{8}
9 ലഭ്യമാക്കാൻ 8, 1 എന്നിവ ചേർക്കുക.
\frac{2}{5}+x-\frac{9}{8}
0.4 എന്ന ദശാംശ സംഖ്യയെ \frac{4}{10} എന്ന അംശത്തിലേക്ക് മാറ്റുക. 2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{16}{40}+x-\frac{45}{40}
5, 8 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 40 ആണ്. \frac{2}{5}, \frac{9}{8} എന്നിവയെ 40 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{16-45}{40}+x
\frac{16}{40}, \frac{45}{40} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
-\frac{29}{40}+x
-29 നേടാൻ 16 എന്നതിൽ നിന്ന് 45 കുറയ്ക്കുക.
0.4+x-\frac{8+1}{8}
8 നേടാൻ 1, 8 എന്നിവ ഗുണിക്കുക.
0.4+x-\frac{9}{8}
9 ലഭ്യമാക്കാൻ 8, 1 എന്നിവ ചേർക്കുക.
\frac{2}{5}+x-\frac{9}{8}
0.4 എന്ന ദശാംശ സംഖ്യയെ \frac{4}{10} എന്ന അംശത്തിലേക്ക് മാറ്റുക. 2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{16}{40}+x-\frac{45}{40}
5, 8 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 40 ആണ്. \frac{2}{5}, \frac{9}{8} എന്നിവയെ 40 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{16-45}{40}+x
\frac{16}{40}, \frac{45}{40} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
-\frac{29}{40}+x
-29 നേടാൻ 16 എന്നതിൽ നിന്ന് 45 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}