x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{200\sqrt{49033}}{49033}\approx 0.903203814
x=-\frac{200\sqrt{49033}}{49033}\approx -0.903203814
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
0=4-0-0.5\times 9.8066x^{2}
പൂജ്യത്തോട് ഗുണിക്കുന്ന എന്തിനും പൂജ്യം ലഭിക്കുന്നു.
0=4-0.5\times 9.8066x^{2}
4 നേടാൻ 4 എന്നതിൽ നിന്ന് 0 കുറയ്ക്കുക.
0=4-4.9033x^{2}
4.9033 നേടാൻ 0.5, 9.8066 എന്നിവ ഗുണിക്കുക.
4-4.9033x^{2}=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-4.9033x^{2}=-4
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x^{2}=\frac{-4}{-4.9033}
ഇരുവശങ്ങളെയും -4.9033 കൊണ്ട് ഹരിക്കുക.
x^{2}=\frac{-40000}{-49033}
അംശത്തെയും ഛേദത്തെയും 10000 കൊണ്ട് ഗുണിച്ച് \frac{-4}{-4.9033} വിപുലീകരിക്കുക.
x^{2}=\frac{40000}{49033}
ന്യൂമറേറ്റർ, ഭിന്നസംഖ്യാഛേദകം എന്നിവയിൽ നിന്നും നെഗറ്റീവ് ചിഹ്നം നീക്കംചെയ്യുന്നതിലൂടെ, \frac{-40000}{-49033} എന്ന അംശം \frac{40000}{49033} എന്നതിലേക്ക് ലളിതമാക്കാവുന്നതാണ്.
x=\frac{200\sqrt{49033}}{49033} x=-\frac{200\sqrt{49033}}{49033}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
0=4-0-0.5\times 9.8066x^{2}
പൂജ്യത്തോട് ഗുണിക്കുന്ന എന്തിനും പൂജ്യം ലഭിക്കുന്നു.
0=4-0.5\times 9.8066x^{2}
4 നേടാൻ 4 എന്നതിൽ നിന്ന് 0 കുറയ്ക്കുക.
0=4-4.9033x^{2}
4.9033 നേടാൻ 0.5, 9.8066 എന്നിവ ഗുണിക്കുക.
4-4.9033x^{2}=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-4.9033x^{2}+4=0
x^{2} എന്ന പദമുള്ളതും x എന്ന പദമില്ലാത്തതുമായ ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ ഇപ്പോഴും \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം (അവ സാധാരണ രൂപത്തിൽ നൽകിക്കഴിഞ്ഞാൽ) ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4.9033\right)\times 4}}{2\left(-4.9033\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -4.9033 എന്നതും b എന്നതിനായി 0 എന്നതും c എന്നതിനായി 4 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{0±\sqrt{-4\left(-4.9033\right)\times 4}}{2\left(-4.9033\right)}
0 സ്ക്വയർ ചെയ്യുക.
x=\frac{0±\sqrt{19.6132\times 4}}{2\left(-4.9033\right)}
-4, -4.9033 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0±\sqrt{78.4528}}{2\left(-4.9033\right)}
19.6132, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0±\frac{\sqrt{49033}}{25}}{2\left(-4.9033\right)}
78.4528 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{0±\frac{\sqrt{49033}}{25}}{-9.8066}
2, -4.9033 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{200\sqrt{49033}}{49033}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{0±\frac{\sqrt{49033}}{25}}{-9.8066} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
x=\frac{200\sqrt{49033}}{49033}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{0±\frac{\sqrt{49033}}{25}}{-9.8066} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
x=-\frac{200\sqrt{49033}}{49033} x=\frac{200\sqrt{49033}}{49033}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}