y എന്നതിനായി സോൾവ് ചെയ്യുക
y=14
y=0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
y^{2}-14y=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
y\left(y-14\right)=0
y ഘടക ലഘൂകരണം ചെയ്യുക.
y=0 y=14
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ y=0, y-14=0 എന്നിവ സോൾവ് ചെയ്യുക.
y^{2}-14y=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
y=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -14 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-\left(-14\right)±14}{2}
\left(-14\right)^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{14±14}{2}
-14 എന്നതിന്റെ വിപരീതം 14 ആണ്.
y=\frac{28}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, y=\frac{14±14}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 14, 14 എന്നതിൽ ചേർക്കുക.
y=14
2 കൊണ്ട് 28 എന്നതിനെ ഹരിക്കുക.
y=\frac{0}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, y=\frac{14±14}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 14 എന്നതിൽ നിന്ന് 14 വ്യവകലനം ചെയ്യുക.
y=0
2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
y=14 y=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
y^{2}-14y=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
y^{2}-14y+\left(-7\right)^{2}=\left(-7\right)^{2}
-7 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -14-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -7 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
y^{2}-14y+49=49
-7 സ്ക്വയർ ചെയ്യുക.
\left(y-7\right)^{2}=49
y^{2}-14y+49 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y-7\right)^{2}}=\sqrt{49}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y-7=7 y-7=-7
ലഘൂകരിക്കുക.
y=14 y=0
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 7 ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}