പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a^{2}+5a-40=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
a=\frac{-5±\sqrt{5^{2}-4\left(-40\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി -40 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
a=\frac{-5±\sqrt{25-4\left(-40\right)}}{2}
5 സ്ക്വയർ ചെയ്യുക.
a=\frac{-5±\sqrt{25+160}}{2}
-4, -40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-5±\sqrt{185}}{2}
25, 160 എന്നതിൽ ചേർക്കുക.
a=\frac{\sqrt{185}-5}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, a=\frac{-5±\sqrt{185}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, \sqrt{185} എന്നതിൽ ചേർക്കുക.
a=\frac{-\sqrt{185}-5}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, a=\frac{-5±\sqrt{185}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് \sqrt{185} വ്യവകലനം ചെയ്യുക.
a=\frac{\sqrt{185}-5}{2} a=\frac{-\sqrt{185}-5}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
a^{2}+5a-40=0
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
a^{2}+5a=40
40 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
a^{2}+5a+\left(\frac{5}{2}\right)^{2}=40+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 5-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
a^{2}+5a+\frac{25}{4}=40+\frac{25}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{2} സ്ക്വയർ ചെയ്യുക.
a^{2}+5a+\frac{25}{4}=\frac{185}{4}
40, \frac{25}{4} എന്നതിൽ ചേർക്കുക.
\left(a+\frac{5}{2}\right)^{2}=\frac{185}{4}
a^{2}+5a+\frac{25}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(a+\frac{5}{2}\right)^{2}}=\sqrt{\frac{185}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
a+\frac{5}{2}=\frac{\sqrt{185}}{2} a+\frac{5}{2}=-\frac{\sqrt{185}}{2}
ലഘൂകരിക്കുക.
a=\frac{\sqrt{185}-5}{2} a=\frac{-\sqrt{185}-5}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{2} കുറയ്ക്കുക.