പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-xx+x\left(-7\right)=6
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
-x^{2}+x\left(-7\right)=6
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
-x^{2}+x\left(-7\right)-6=0
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
-x^{2}-7x-6=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
-7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49+4\left(-6\right)}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-1\right)}
4, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-1\right)}
49, -24 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-7\right)±5}{2\left(-1\right)}
25 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{7±5}{2\left(-1\right)}
-7 എന്നതിന്‍റെ വിപരീതം 7 ആണ്.
x=\frac{7±5}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{7±5}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, 5 എന്നതിൽ ചേർക്കുക.
x=-6
-2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{7±5}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
x=-1
-2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=-6 x=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-xx+x\left(-7\right)=6
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
-x^{2}+x\left(-7\right)=6
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
-x^{2}-7x=6
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-x^{2}-7x}{-1}=\frac{6}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{7}{-1}\right)x=\frac{6}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+7x=\frac{6}{-1}
-1 കൊണ്ട് -7 എന്നതിനെ ഹരിക്കുക.
x^{2}+7x=-6
-1 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-6+\left(\frac{7}{2}\right)^{2}
\frac{7}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 7-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{7}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+7x+\frac{49}{4}=-6+\frac{49}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{7}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+7x+\frac{49}{4}=\frac{25}{4}
-6, \frac{49}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{7}{2}\right)^{2}=\frac{25}{4}
x^{2}+7x+\frac{49}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{7}{2}=\frac{5}{2} x+\frac{7}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
x=-1 x=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{2} കുറയ്ക്കുക.