പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-7x^{2}+7x=\left(x-1\right)\left(x+1\right)
x-1 കൊണ്ട് -7x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-7x^{2}+7x=x^{2}-1
\left(x-1\right)\left(x+1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 സ്ക്വയർ ചെയ്യുക.
-7x^{2}+7x-x^{2}=-1
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
-8x^{2}+7x=-1
-8x^{2} നേടാൻ -7x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
-8x^{2}+7x+1=0
1 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2\left(-8\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -8 എന്നതും b എന്നതിനായി 7 എന്നതും c എന്നതിനായി 1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2\left(-8\right)}
7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-7±\sqrt{49+32}}{2\left(-8\right)}
-4, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{81}}{2\left(-8\right)}
49, 32 എന്നതിൽ ചേർക്കുക.
x=\frac{-7±9}{2\left(-8\right)}
81 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-7±9}{-16}
2, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{-16}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-7±9}{-16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7, 9 എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{8}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{-16} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{16}{-16}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-7±9}{-16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=1
-16 കൊണ്ട് -16 എന്നതിനെ ഹരിക്കുക.
x=-\frac{1}{8} x=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-7x^{2}+7x=\left(x-1\right)\left(x+1\right)
x-1 കൊണ്ട് -7x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-7x^{2}+7x=x^{2}-1
\left(x-1\right)\left(x+1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 സ്ക്വയർ ചെയ്യുക.
-7x^{2}+7x-x^{2}=-1
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
-8x^{2}+7x=-1
-8x^{2} നേടാൻ -7x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
\frac{-8x^{2}+7x}{-8}=-\frac{1}{-8}
ഇരുവശങ്ങളെയും -8 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{7}{-8}x=-\frac{1}{-8}
-8 കൊണ്ട് ഹരിക്കുന്നത്, -8 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{7}{8}x=-\frac{1}{-8}
-8 കൊണ്ട് 7 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{7}{8}x=\frac{1}{8}
-8 കൊണ്ട് -1 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{7}{16}\right)^{2}
-\frac{7}{16} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{7}{8}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{7}{16} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{1}{8}+\frac{49}{256}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{16} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{81}{256}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{8} എന്നത് \frac{49}{256} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{7}{16}\right)^{2}=\frac{81}{256}
x^{2}-\frac{7}{8}x+\frac{49}{256} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{7}{16}=\frac{9}{16} x-\frac{7}{16}=-\frac{9}{16}
ലഘൂകരിക്കുക.
x=1 x=-\frac{1}{8}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{7}{16} ചേർക്കുക.