പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-4x^{2}+4x=2x-2
x-1 കൊണ്ട് -4x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-4x^{2}+4x-2x=-2
ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
-4x^{2}+2x=-2
2x നേടാൻ 4x, -2x എന്നിവ യോജിപ്പിക്കുക.
-4x^{2}+2x+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -4 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\left(-4\right)\times 2}}{2\left(-4\right)}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4+16\times 2}}{2\left(-4\right)}
-4, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{4+32}}{2\left(-4\right)}
16, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{36}}{2\left(-4\right)}
4, 32 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±6}{2\left(-4\right)}
36 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-2±6}{-8}
2, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4}{-8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±6}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 6 എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{-8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{8}{-8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±6}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=1
-8 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
x=-\frac{1}{2} x=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-4x^{2}+4x=2x-2
x-1 കൊണ്ട് -4x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-4x^{2}+4x-2x=-2
ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
-4x^{2}+2x=-2
2x നേടാൻ 4x, -2x എന്നിവ യോജിപ്പിക്കുക.
\frac{-4x^{2}+2x}{-4}=-\frac{2}{-4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{2}{-4}x=-\frac{2}{-4}
-4 കൊണ്ട് ഹരിക്കുന്നത്, -4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{1}{2}x=-\frac{2}{-4}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{-4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{1}{2}x=\frac{1}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{-4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{2} എന്നത് \frac{1}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
ലഘൂകരിക്കുക.
x=1 x=-\frac{1}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{4} ചേർക്കുക.