പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-y^{2}+10-3y=0
ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
-y^{2}-3y+10=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-3 ab=-10=-10
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -y^{2}+ay+by+10 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-10 2,-5
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -10 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-10=-9 2-5=-3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=2 b=-5
സൊല്യൂഷൻ എന്നത് -3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-y^{2}+2y\right)+\left(-5y+10\right)
-y^{2}-3y+10 എന്നത് \left(-y^{2}+2y\right)+\left(-5y+10\right) എന്നായി തിരുത്തിയെഴുതുക.
y\left(-y+2\right)+5\left(-y+2\right)
ആദ്യ ഗ്രൂപ്പിലെ y എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-y+2\right)\left(y+5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -y+2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
y=2 y=-5
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ -y+2=0, y+5=0 എന്നിവ സോൾവ് ചെയ്യുക.
-y^{2}+10-3y=0
ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
-y^{2}-3y+10=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി 10 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
-3 സ്ക്വയർ ചെയ്യുക.
y=\frac{-\left(-3\right)±\sqrt{9+4\times 10}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-3\right)±\sqrt{9+40}}{2\left(-1\right)}
4, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-3\right)±\sqrt{49}}{2\left(-1\right)}
9, 40 എന്നതിൽ ചേർക്കുക.
y=\frac{-\left(-3\right)±7}{2\left(-1\right)}
49 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{3±7}{2\left(-1\right)}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
y=\frac{3±7}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{10}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, y=\frac{3±7}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 7 എന്നതിൽ ചേർക്കുക.
y=-5
-2 കൊണ്ട് 10 എന്നതിനെ ഹരിക്കുക.
y=-\frac{4}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, y=\frac{3±7}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
y=2
-2 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
y=-5 y=2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-y^{2}+10-3y=0
ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
-y^{2}-3y=-10
ഇരുവശങ്ങളിൽ നിന്നും 10 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{-y^{2}-3y}{-1}=-\frac{10}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
y^{2}+\left(-\frac{3}{-1}\right)y=-\frac{10}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
y^{2}+3y=-\frac{10}{-1}
-1 കൊണ്ട് -3 എന്നതിനെ ഹരിക്കുക.
y^{2}+3y=10
-1 കൊണ്ട് -10 എന്നതിനെ ഹരിക്കുക.
y^{2}+3y+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
y^{2}+3y+\frac{9}{4}=10+\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{2} സ്ക്വയർ ചെയ്യുക.
y^{2}+3y+\frac{9}{4}=\frac{49}{4}
10, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(y+\frac{3}{2}\right)^{2}=\frac{49}{4}
y^{2}+3y+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y+\frac{3}{2}=\frac{7}{2} y+\frac{3}{2}=-\frac{7}{2}
ലഘൂകരിക്കുക.
y=2 y=-5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.