പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x^{2}+4x-x=-4
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
-x^{2}+3x=-4
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
-x^{2}+3x+4=0
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
a+b=3 ab=-4=-4
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx+4 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,4 -2,2
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -4 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+4=3 -2+2=0
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=4 b=-1
സൊല്യൂഷൻ എന്നത് 3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+4x\right)+\left(-x+4\right)
-x^{2}+3x+4 എന്നത് \left(-x^{2}+4x\right)+\left(-x+4\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(x-4\right)-\left(x-4\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-4\right)\left(-x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=4 x=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-4=0, -x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
-x^{2}+4x-x=-4
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
-x^{2}+3x=-4
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
-x^{2}+3x+4=0
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 3 എന്നതും c എന്നതിനായി 4 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
9, 16 എന്നതിൽ ചേർക്കുക.
x=\frac{-3±5}{2\left(-1\right)}
25 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-3±5}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±5}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, 5 എന്നതിൽ ചേർക്കുക.
x=-1
-2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=-\frac{8}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±5}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
x=4
-2 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
x=-1 x=4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-x^{2}+4x-x=-4
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
-x^{2}+3x=-4
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-3x=-\frac{4}{-1}
-1 കൊണ്ട് 3 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x=4
-1 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
4, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
x=4 x=-1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.