പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x^{2}+14x=-11
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
-x^{2}+14x-\left(-11\right)=-11-\left(-11\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 11 ചേർക്കുക.
-x^{2}+14x-\left(-11\right)=0
അതിൽ നിന്നുതന്നെ -11 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
-x^{2}+14x+11=0
0 എന്നതിൽ നിന്ന് -11 വ്യവകലനം ചെയ്യുക.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 14 എന്നതും c എന്നതിനായി 11 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-14±\sqrt{196-4\left(-1\right)\times 11}}{2\left(-1\right)}
14 സ്ക്വയർ ചെയ്യുക.
x=\frac{-14±\sqrt{196+4\times 11}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-14±\sqrt{196+44}}{2\left(-1\right)}
4, 11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-14±\sqrt{240}}{2\left(-1\right)}
196, 44 എന്നതിൽ ചേർക്കുക.
x=\frac{-14±4\sqrt{15}}{2\left(-1\right)}
240 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-14±4\sqrt{15}}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4\sqrt{15}-14}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±4\sqrt{15}}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14, 4\sqrt{15} എന്നതിൽ ചേർക്കുക.
x=7-2\sqrt{15}
-2 കൊണ്ട് -14+4\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\frac{-4\sqrt{15}-14}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±4\sqrt{15}}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14 എന്നതിൽ നിന്ന് 4\sqrt{15} വ്യവകലനം ചെയ്യുക.
x=2\sqrt{15}+7
-2 കൊണ്ട് -14-4\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=7-2\sqrt{15} x=2\sqrt{15}+7
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-x^{2}+14x=-11
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-x^{2}+14x}{-1}=-\frac{11}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{14}{-1}x=-\frac{11}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-14x=-\frac{11}{-1}
-1 കൊണ്ട് 14 എന്നതിനെ ഹരിക്കുക.
x^{2}-14x=11
-1 കൊണ്ട് -11 എന്നതിനെ ഹരിക്കുക.
x^{2}-14x+\left(-7\right)^{2}=11+\left(-7\right)^{2}
-7 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -14-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -7 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-14x+49=11+49
-7 സ്ക്വയർ ചെയ്യുക.
x^{2}-14x+49=60
11, 49 എന്നതിൽ ചേർക്കുക.
\left(x-7\right)^{2}=60
x^{2}-14x+49 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-7\right)^{2}}=\sqrt{60}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-7=2\sqrt{15} x-7=-2\sqrt{15}
ലഘൂകരിക്കുക.
x=2\sqrt{15}+7 x=7-2\sqrt{15}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 7 ചേർക്കുക.