പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
b എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-b^{2}+b+26=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
b=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 26}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി 26 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
b=\frac{-1±\sqrt{1-4\left(-1\right)\times 26}}{2\left(-1\right)}
1 സ്ക്വയർ ചെയ്യുക.
b=\frac{-1±\sqrt{1+4\times 26}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
b=\frac{-1±\sqrt{1+104}}{2\left(-1\right)}
4, 26 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
b=\frac{-1±\sqrt{105}}{2\left(-1\right)}
1, 104 എന്നതിൽ ചേർക്കുക.
b=\frac{-1±\sqrt{105}}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
b=\frac{\sqrt{105}-1}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, b=\frac{-1±\sqrt{105}}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, \sqrt{105} എന്നതിൽ ചേർക്കുക.
b=\frac{1-\sqrt{105}}{2}
-2 കൊണ്ട് -1+\sqrt{105} എന്നതിനെ ഹരിക്കുക.
b=\frac{-\sqrt{105}-1}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, b=\frac{-1±\sqrt{105}}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് \sqrt{105} വ്യവകലനം ചെയ്യുക.
b=\frac{\sqrt{105}+1}{2}
-2 കൊണ്ട് -1-\sqrt{105} എന്നതിനെ ഹരിക്കുക.
b=\frac{1-\sqrt{105}}{2} b=\frac{\sqrt{105}+1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-b^{2}+b+26=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
-b^{2}+b+26-26=-26
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 26 കുറയ്ക്കുക.
-b^{2}+b=-26
അതിൽ നിന്നുതന്നെ 26 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{-b^{2}+b}{-1}=-\frac{26}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
b^{2}+\frac{1}{-1}b=-\frac{26}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
b^{2}-b=-\frac{26}{-1}
-1 കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
b^{2}-b=26
-1 കൊണ്ട് -26 എന്നതിനെ ഹരിക്കുക.
b^{2}-b+\left(-\frac{1}{2}\right)^{2}=26+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
b^{2}-b+\frac{1}{4}=26+\frac{1}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{2} സ്ക്വയർ ചെയ്യുക.
b^{2}-b+\frac{1}{4}=\frac{105}{4}
26, \frac{1}{4} എന്നതിൽ ചേർക്കുക.
\left(b-\frac{1}{2}\right)^{2}=\frac{105}{4}
b^{2}-b+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(b-\frac{1}{2}\right)^{2}}=\sqrt{\frac{105}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
b-\frac{1}{2}=\frac{\sqrt{105}}{2} b-\frac{1}{2}=-\frac{\sqrt{105}}{2}
ലഘൂകരിക്കുക.
b=\frac{\sqrt{105}+1}{2} b=\frac{1-\sqrt{105}}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{2} ചേർക്കുക.