പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-15 ab=-8\times 2=-16
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -8x^{2}+ax+bx+2 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-16 2,-8 4,-4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -16 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-16=-15 2-8=-6 4-4=0
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=1 b=-16
സൊല്യൂഷൻ എന്നത് -15 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-8x^{2}+x\right)+\left(-16x+2\right)
-8x^{2}-15x+2 എന്നത് \left(-8x^{2}+x\right)+\left(-16x+2\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(8x-1\right)-2\left(8x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ -2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(8x-1\right)\left(-x-2\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 8x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
-8x^{2}-15x+2=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-8\right)\times 2}}{2\left(-8\right)}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-8\right)\times 2}}{2\left(-8\right)}
-15 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225+32\times 2}}{2\left(-8\right)}
-4, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{225+64}}{2\left(-8\right)}
32, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{289}}{2\left(-8\right)}
225, 64 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-15\right)±17}{2\left(-8\right)}
289 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{15±17}{2\left(-8\right)}
-15 എന്നതിന്‍റെ വിപരീതം 15 ആണ്.
x=\frac{15±17}{-16}
2, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{32}{-16}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{15±17}{-16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15, 17 എന്നതിൽ ചേർക്കുക.
x=-2
-16 കൊണ്ട് 32 എന്നതിനെ ഹരിക്കുക.
x=-\frac{2}{-16}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{15±17}{-16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15 എന്നതിൽ നിന്ന് 17 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{8}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{-16} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
-8x^{2}-15x+2=-8\left(x-\left(-2\right)\right)\left(x-\frac{1}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -2 എന്നതും, x_{2}-നായി \frac{1}{8} എന്നതും പകരം വയ്‌ക്കുക.
-8x^{2}-15x+2=-8\left(x+2\right)\left(x-\frac{1}{8}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
-8x^{2}-15x+2=-8\left(x+2\right)\times \frac{-8x+1}{-8}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{1}{8} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
-8x^{2}-15x+2=\left(x+2\right)\left(-8x+1\right)
-8, 8 എന്നിവയിലെ 8 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.