x എന്നതിനായി സോൾവ് ചെയ്യുക
x\in \begin{bmatrix}-\frac{2}{3},\frac{1}{2}\end{bmatrix}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
6x^{2}+x-2\leq 0
-6x^{2}-x+2 എന്നതിലെ ഉയർന്ന പവറിന്റെ കോഎഫിഷ്യന്റ് പോസിറ്റീവ് ആക്കാൻ വ്യത്യാസത്തെ -1 കൊണ്ട് ഗുണിക്കുക. -1 നെഗറ്റീവ് ആയതിനാൽ, സമമല്ല ദിശ മാറി.
6x^{2}+x-2=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-2\right)}}{2\times 6}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 6 എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി -2 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{-1±7}{12}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=\frac{1}{2} x=-\frac{2}{3}
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ x=\frac{-1±7}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
6\left(x-\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\leq 0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
x-\frac{1}{2}\geq 0 x+\frac{2}{3}\leq 0
ഫലം ≤0 ആകാൻ x-\frac{1}{2}, x+\frac{2}{3} എന്നിവയിൽ ഒരു മൂല്യം ≥0 എന്നതും മറ്റൊന്ന് ≤0 എന്നതും ആയിരിക്കണം. x-\frac{1}{2}\geq 0, x+\frac{2}{3}\leq 0 എന്നിവ ആയിരിക്കുമ്പോഴുള്ള സ്ഥിതി പരിഗണിക്കുക.
x\in \emptyset
എല്ലാ x എന്നതിനായും ഇത് ഫാൾസ് ആണ്.
x+\frac{2}{3}\geq 0 x-\frac{1}{2}\leq 0
x-\frac{1}{2}\leq 0, x+\frac{2}{3}\geq 0 എന്നിവ ആയിരിക്കുമ്പോഴുള്ള സ്ഥിതി പരിഗണിക്കുക.
x\in \begin{bmatrix}-\frac{2}{3},\frac{1}{2}\end{bmatrix}
ഇരു അസമത്വങ്ങളെയും തൃപ്തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x\in \left[-\frac{2}{3},\frac{1}{2}\right] ആണ്.
x\in \begin{bmatrix}-\frac{2}{3},\frac{1}{2}\end{bmatrix}
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}