പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-6x^{2}-3x=-3
ഇരുവശങ്ങളിൽ നിന്നും 3x കുറയ്ക്കുക.
-6x^{2}-3x+3=0
3 ഇരു വശങ്ങളിലും ചേർക്കുക.
-2x^{2}-x+1=0
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
a+b=-1 ab=-2=-2
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -2x^{2}+ax+bx+1 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=1 b=-2
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
-2x^{2}-x+1 എന്നത് \left(-2x^{2}+x\right)+\left(-2x+1\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(2x-1\right)-\left(2x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-1\right)\left(-x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{1}{2} x=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 2x-1=0, -x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
-6x^{2}-3x=-3
ഇരുവശങ്ങളിൽ നിന്നും 3x കുറയ്ക്കുക.
-6x^{2}-3x+3=0
3 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)\times 3}}{2\left(-6\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -6 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി 3 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)\times 3}}{2\left(-6\right)}
-3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9+24\times 3}}{2\left(-6\right)}
-4, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\left(-6\right)}
24, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\left(-6\right)}
9, 72 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-3\right)±9}{2\left(-6\right)}
81 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3±9}{2\left(-6\right)}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
x=\frac{3±9}{-12}
2, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{-12}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±9}{-12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 9 എന്നതിൽ ചേർക്കുക.
x=-1
-12 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x=-\frac{6}{-12}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±9}{-12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{2}
6 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{-12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-1 x=\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-6x^{2}-3x=-3
ഇരുവശങ്ങളിൽ നിന്നും 3x കുറയ്ക്കുക.
\frac{-6x^{2}-3x}{-6}=-\frac{3}{-6}
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{3}{-6}\right)x=-\frac{3}{-6}
-6 കൊണ്ട് ഹരിക്കുന്നത്, -6 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{1}{2}x=-\frac{3}{-6}
3 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-3}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}+\frac{1}{2}x=\frac{1}{2}
3 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-3}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{1}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{2} എന്നത് \frac{1}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
ലഘൂകരിക്കുക.
x=\frac{1}{2} x=-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4} കുറയ്ക്കുക.