x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\log_{2}\left(\frac{95367431640625}{59049}\right)+10\approx 40.588936891
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{i\times 20\pi n_{1}}{\ln(2)}+\log_{2}\left(\frac{95367431640625}{59049}\right)+10
n_{1}\in \mathrm{Z}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2^{0.1x}=\frac{-100}{-6}
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
2^{0.1x}=\frac{50}{3}
-2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-100}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\log(2^{0.1x})=\log(\frac{50}{3})
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും ലോഗരിതം എടുക്കുക.
0.1x\log(2)=\log(\frac{50}{3})
ഒരു പവറിലേക്ക് ഉയർത്തിയ സംഖ്യയുടെ ലോഗരിതം എന്നത് പവറും സംഖ്യയുടെ ലോഗരിതവും തമ്മിലുള്ള ഗുണിതമാണ്.
0.1x=\frac{\log(\frac{50}{3})}{\log(2)}
ഇരുവശങ്ങളെയും \log(2) കൊണ്ട് ഹരിക്കുക.
0.1x=\log_{2}\left(\frac{50}{3}\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) എന്ന ചേഞ്ച്-ഓഫ്-ബേസ് സൂത്രവാക്യം ഉപയോഗിച്ച്.
x=\frac{\ln(\frac{50}{3})}{0.1\ln(2)}
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഗുണിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}