പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-4a^{2}-5a+1=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)}}{2\left(-4\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -4 എന്നതും b എന്നതിനായി -5 എന്നതും c എന്നതിനായി 1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
a=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)}}{2\left(-4\right)}
-5 സ്ക്വയർ ചെയ്യുക.
a=\frac{-\left(-5\right)±\sqrt{25+16}}{2\left(-4\right)}
-4, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-\left(-5\right)±\sqrt{41}}{2\left(-4\right)}
25, 16 എന്നതിൽ ചേർക്കുക.
a=\frac{5±\sqrt{41}}{2\left(-4\right)}
-5 എന്നതിന്‍റെ വിപരീതം 5 ആണ്.
a=\frac{5±\sqrt{41}}{-8}
2, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{\sqrt{41}+5}{-8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, a=\frac{5±\sqrt{41}}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 5, \sqrt{41} എന്നതിൽ ചേർക്കുക.
a=\frac{-\sqrt{41}-5}{8}
-8 കൊണ്ട് 5+\sqrt{41} എന്നതിനെ ഹരിക്കുക.
a=\frac{5-\sqrt{41}}{-8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, a=\frac{5±\sqrt{41}}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 5 എന്നതിൽ നിന്ന് \sqrt{41} വ്യവകലനം ചെയ്യുക.
a=\frac{\sqrt{41}-5}{8}
-8 കൊണ്ട് 5-\sqrt{41} എന്നതിനെ ഹരിക്കുക.
a=\frac{-\sqrt{41}-5}{8} a=\frac{\sqrt{41}-5}{8}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-4a^{2}-5a+1=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
-4a^{2}-5a+1-1=-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
-4a^{2}-5a=-1
അതിൽ നിന്നുതന്നെ 1 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{-4a^{2}-5a}{-4}=-\frac{1}{-4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
a^{2}+\left(-\frac{5}{-4}\right)a=-\frac{1}{-4}
-4 കൊണ്ട് ഹരിക്കുന്നത്, -4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
a^{2}+\frac{5}{4}a=-\frac{1}{-4}
-4 കൊണ്ട് -5 എന്നതിനെ ഹരിക്കുക.
a^{2}+\frac{5}{4}a=\frac{1}{4}
-4 കൊണ്ട് -1 എന്നതിനെ ഹരിക്കുക.
a^{2}+\frac{5}{4}a+\left(\frac{5}{8}\right)^{2}=\frac{1}{4}+\left(\frac{5}{8}\right)^{2}
\frac{5}{8} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{5}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{8} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
a^{2}+\frac{5}{4}a+\frac{25}{64}=\frac{1}{4}+\frac{25}{64}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{8} സ്ക്വയർ ചെയ്യുക.
a^{2}+\frac{5}{4}a+\frac{25}{64}=\frac{41}{64}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{4} എന്നത് \frac{25}{64} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(a+\frac{5}{8}\right)^{2}=\frac{41}{64}
a^{2}+\frac{5}{4}a+\frac{25}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(a+\frac{5}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
a+\frac{5}{8}=\frac{\sqrt{41}}{8} a+\frac{5}{8}=-\frac{\sqrt{41}}{8}
ലഘൂകരിക്കുക.
a=\frac{\sqrt{41}-5}{8} a=\frac{-\sqrt{41}-5}{8}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{8} കുറയ്ക്കുക.