പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-3x\left(2+3x\right)=1
3x നേടാൻ -x, 4x എന്നിവ യോജിപ്പിക്കുക.
-6x-9x^{2}=1
2+3x കൊണ്ട് -3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-6x-9x^{2}-1=0
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
-9x^{2}-6x-1=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -9 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി -1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
-6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
-4, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-9\right)}
36, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-9\right)}
36, -36 എന്നതിൽ ചേർക്കുക.
x=-\frac{-6}{2\left(-9\right)}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{6}{2\left(-9\right)}
-6 എന്നതിന്‍റെ വിപരീതം 6 ആണ്.
x=\frac{6}{-18}
2, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{1}{3}
6 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{-18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
-3x\left(2+3x\right)=1
3x നേടാൻ -x, 4x എന്നിവ യോജിപ്പിക്കുക.
-6x-9x^{2}=1
2+3x കൊണ്ട് -3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-9x^{2}-6x=1
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-9x^{2}-6x}{-9}=\frac{1}{-9}
ഇരുവശങ്ങളെയും -9 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{6}{-9}\right)x=\frac{1}{-9}
-9 കൊണ്ട് ഹരിക്കുന്നത്, -9 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{2}{3}x=\frac{1}{-9}
3 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{-9} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
-9 കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
\frac{1}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{2}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{1}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{9} എന്നത് \frac{1}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{1}{3}\right)^{2}=0
x^{2}+\frac{2}{3}x+\frac{1}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
ലഘൂകരിക്കുക.
x=-\frac{1}{3} x=-\frac{1}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{3} കുറയ്ക്കുക.
x=-\frac{1}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു. പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.