പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x^{2}-3x+28=0
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
a+b=-3 ab=-28=-28
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx+28 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-28 2,-14 4,-7
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -28 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-28=-27 2-14=-12 4-7=-3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=4 b=-7
സൊല്യൂഷൻ എന്നത് -3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+4x\right)+\left(-7x+28\right)
-x^{2}-3x+28 എന്നത് \left(-x^{2}+4x\right)+\left(-7x+28\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(-x+4\right)+7\left(-x+4\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 7 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-x+4\right)\left(x+7\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -x+4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=4 x=-7
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ -x+4=0, x+7=0 എന്നിവ സോൾവ് ചെയ്യുക.
-3x^{2}-9x+84=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-3\right)\times 84}}{2\left(-3\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -3 എന്നതും b എന്നതിനായി -9 എന്നതും c എന്നതിനായി 84 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-3\right)\times 84}}{2\left(-3\right)}
-9 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{81+12\times 84}}{2\left(-3\right)}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-9\right)±\sqrt{81+1008}}{2\left(-3\right)}
12, 84 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-9\right)±\sqrt{1089}}{2\left(-3\right)}
81, 1008 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-9\right)±33}{2\left(-3\right)}
1089 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{9±33}{2\left(-3\right)}
-9 എന്നതിന്‍റെ വിപരീതം 9 ആണ്.
x=\frac{9±33}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{42}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{9±33}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9, 33 എന്നതിൽ ചേർക്കുക.
x=-7
-6 കൊണ്ട് 42 എന്നതിനെ ഹരിക്കുക.
x=-\frac{24}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{9±33}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9 എന്നതിൽ നിന്ന് 33 വ്യവകലനം ചെയ്യുക.
x=4
-6 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
x=-7 x=4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-3x^{2}-9x+84=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
-3x^{2}-9x+84-84=-84
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 84 കുറയ്ക്കുക.
-3x^{2}-9x=-84
അതിൽ നിന്നുതന്നെ 84 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{-3x^{2}-9x}{-3}=-\frac{84}{-3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{9}{-3}\right)x=-\frac{84}{-3}
-3 കൊണ്ട് ഹരിക്കുന്നത്, -3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+3x=-\frac{84}{-3}
-3 കൊണ്ട് -9 എന്നതിനെ ഹരിക്കുക.
x^{2}+3x=28
-3 കൊണ്ട് -84 എന്നതിനെ ഹരിക്കുക.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
28, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
x^{2}+3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
ലഘൂകരിക്കുക.
x=4 x=-7
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.