x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-8
x=0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-3x^{2}-24x-13+13=0
13 ഇരു വശങ്ങളിലും ചേർക്കുക.
-3x^{2}-24x=0
0 ലഭ്യമാക്കാൻ -13, 13 എന്നിവ ചേർക്കുക.
x\left(-3x-24\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-8
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, -3x-24=0 എന്നിവ സോൾവ് ചെയ്യുക.
-3x^{2}-24x-13=-13
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
-3x^{2}-24x-13-\left(-13\right)=-13-\left(-13\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 13 ചേർക്കുക.
-3x^{2}-24x-13-\left(-13\right)=0
അതിൽ നിന്നുതന്നെ -13 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
-3x^{2}-24x=0
-13 എന്നതിൽ നിന്ന് -13 വ്യവകലനം ചെയ്യുക.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\left(-3\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -3 എന്നതും b എന്നതിനായി -24 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-24\right)±24}{2\left(-3\right)}
\left(-24\right)^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{24±24}{2\left(-3\right)}
-24 എന്നതിന്റെ വിപരീതം 24 ആണ്.
x=\frac{24±24}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{48}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{24±24}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 24, 24 എന്നതിൽ ചേർക്കുക.
x=-8
-6 കൊണ്ട് 48 എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{24±24}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 24 എന്നതിൽ നിന്ന് 24 വ്യവകലനം ചെയ്യുക.
x=0
-6 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-8 x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
-3x^{2}-24x-13=-13
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
-3x^{2}-24x-13-\left(-13\right)=-13-\left(-13\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 13 ചേർക്കുക.
-3x^{2}-24x=-13-\left(-13\right)
അതിൽ നിന്നുതന്നെ -13 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
-3x^{2}-24x=0
-13 എന്നതിൽ നിന്ന് -13 വ്യവകലനം ചെയ്യുക.
\frac{-3x^{2}-24x}{-3}=\frac{0}{-3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{0}{-3}
-3 കൊണ്ട് ഹരിക്കുന്നത്, -3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+8x=\frac{0}{-3}
-3 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
x^{2}+8x=0
-3 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+8x+4^{2}=4^{2}
4 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 8-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും 4 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+8x+16=16
4 സ്ക്വയർ ചെയ്യുക.
\left(x+4\right)^{2}=16
x^{2}+8x+16 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+4\right)^{2}}=\sqrt{16}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+4=4 x+4=-4
ലഘൂകരിക്കുക.
x=0 x=-8
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}