പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=17 ab=-3\left(-20\right)=60
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -3x^{2}+ax+bx-20 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,60 2,30 3,20 4,15 5,12 6,10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 60 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=12 b=5
സൊല്യൂഷൻ എന്നത് 17 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-3x^{2}+12x\right)+\left(5x-20\right)
-3x^{2}+17x-20 എന്നത് \left(-3x^{2}+12x\right)+\left(5x-20\right) എന്നായി തിരുത്തിയെഴുതുക.
3x\left(-x+4\right)-5\left(-x+4\right)
ആദ്യ ഗ്രൂപ്പിലെ 3x എന്നതും രണ്ടാമത്തേതിലെ -5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-x+4\right)\left(3x-5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -x+4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
-3x^{2}+17x-20=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-17±\sqrt{17^{2}-4\left(-3\right)\left(-20\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-17±\sqrt{289-4\left(-3\right)\left(-20\right)}}{2\left(-3\right)}
17 സ്ക്വയർ ചെയ്യുക.
x=\frac{-17±\sqrt{289+12\left(-20\right)}}{2\left(-3\right)}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-17±\sqrt{289-240}}{2\left(-3\right)}
12, -20 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-17±\sqrt{49}}{2\left(-3\right)}
289, -240 എന്നതിൽ ചേർക്കുക.
x=\frac{-17±7}{2\left(-3\right)}
49 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-17±7}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{10}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-17±7}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -17, 7 എന്നതിൽ ചേർക്കുക.
x=\frac{5}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-10}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{24}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-17±7}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -17 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
x=4
-6 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
-3x^{2}+17x-20=-3\left(x-\frac{5}{3}\right)\left(x-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{5}{3} എന്നതും, x_{2}-നായി 4 എന്നതും പകരം വയ്‌ക്കുക.
-3x^{2}+17x-20=-3\times \frac{-3x+5}{-3}\left(x-4\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{5}{3} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
-3x^{2}+17x-20=\left(-3x+5\right)\left(x-4\right)
-3, 3 എന്നിവയിലെ 3 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.