പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}-2x-12>0
-2x^{2}+2x+12 എന്നതിലെ ഉയർന്ന പവറിന്‍റെ കോഎഫിഷ്യന്‍റ് പോസിറ്റീവ് ആക്കാൻ വ്യത്യാസത്തെ -1 കൊണ്ട് ഗുണിക്കുക. -1 നെഗറ്റീവ് ആയതിനാൽ, സമമല്ല ദിശ മാറി.
2x^{2}-2x-12=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -2 എന്നതും c എന്നതിനായി -12 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{2±10}{4}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=3 x=-2
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ x=\frac{2±10}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
2\left(x-3\right)\left(x+2\right)>0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
x-3<0 x+2<0
ഫലം പോസിറ്റീവ് ആകാൻ x-3, x+2 എന്നിവ രണ്ടും ഒന്നുകിൽ പോസിറ്റീവോ അല്ലെങ്കിൽ നെഗറ്റീവോ ആയിരിക്കണം. x-3, x+2 എന്നിവ രണ്ടും നെഗറ്റീവ് ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
x<-2
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x<-2 ആണ്.
x+2>0 x-3>0
x-3, x+2 എന്നിവ രണ്ടും പോസിറ്റീവ് ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
x>3
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x>3 ആണ്.
x<-2\text{; }x>3
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.