b എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}b=\frac{7-3x}{l}\text{, }&l\neq 0\\b\in \mathrm{C}\text{, }&x=\frac{7}{3}\text{ and }l=0\end{matrix}\right.
l എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}l=\frac{7-3x}{b}\text{, }&b\neq 0\\l\in \mathrm{C}\text{, }&x=\frac{7}{3}\text{ and }b=0\end{matrix}\right.
b എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}b=\frac{7-3x}{l}\text{, }&l\neq 0\\b\in \mathrm{R}\text{, }&x=\frac{7}{3}\text{ and }l=0\end{matrix}\right.
l എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}l=\frac{7-3x}{b}\text{, }&b\neq 0\\l\in \mathrm{R}\text{, }&x=\frac{7}{3}\text{ and }b=0\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-bl=2\left(2x-3\right)-\left(x+1\right)
4,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 4 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-bl=4x-6-\left(x+1\right)
2x-3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-bl=4x-6-x-1
x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-bl=3x-6-1
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
-bl=3x-7
-7 നേടാൻ -6 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\left(-l\right)b=3x-7
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(-l\right)b}{-l}=\frac{3x-7}{-l}
ഇരുവശങ്ങളെയും -l കൊണ്ട് ഹരിക്കുക.
b=\frac{3x-7}{-l}
-l കൊണ്ട് ഹരിക്കുന്നത്, -l കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
b=\frac{7-3x}{l}
-l കൊണ്ട് -7+3x എന്നതിനെ ഹരിക്കുക.
-bl=2\left(2x-3\right)-\left(x+1\right)
4,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 4 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-bl=4x-6-\left(x+1\right)
2x-3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-bl=4x-6-x-1
x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-bl=3x-6-1
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
-bl=3x-7
-7 നേടാൻ -6 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\left(-b\right)l=3x-7
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(-b\right)l}{-b}=\frac{3x-7}{-b}
ഇരുവശങ്ങളെയും -b കൊണ്ട് ഹരിക്കുക.
l=\frac{3x-7}{-b}
-b കൊണ്ട് ഹരിക്കുന്നത്, -b കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
l=\frac{7-3x}{b}
-b കൊണ്ട് -7+3x എന്നതിനെ ഹരിക്കുക.
-bl=2\left(2x-3\right)-\left(x+1\right)
4,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 4 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-bl=4x-6-\left(x+1\right)
2x-3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-bl=4x-6-x-1
x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-bl=3x-6-1
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
-bl=3x-7
-7 നേടാൻ -6 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\left(-l\right)b=3x-7
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(-l\right)b}{-l}=\frac{3x-7}{-l}
ഇരുവശങ്ങളെയും -l കൊണ്ട് ഹരിക്കുക.
b=\frac{3x-7}{-l}
-l കൊണ്ട് ഹരിക്കുന്നത്, -l കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
b=\frac{7-3x}{l}
-l കൊണ്ട് 3x-7 എന്നതിനെ ഹരിക്കുക.
-bl=2\left(2x-3\right)-\left(x+1\right)
4,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 4 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-bl=4x-6-\left(x+1\right)
2x-3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-bl=4x-6-x-1
x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-bl=3x-6-1
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
-bl=3x-7
-7 നേടാൻ -6 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\left(-b\right)l=3x-7
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(-b\right)l}{-b}=\frac{3x-7}{-b}
ഇരുവശങ്ങളെയും -b കൊണ്ട് ഹരിക്കുക.
l=\frac{3x-7}{-b}
-b കൊണ്ട് ഹരിക്കുന്നത്, -b കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
l=\frac{7-3x}{b}
-b കൊണ്ട് 3x-7 എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}