മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{2\sqrt{2}}{3}-\frac{4\sqrt{5}}{15}+\frac{4}{3}\approx -0.205760502
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{-\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
\sqrt{2} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{1}{\sqrt{2}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
\sqrt{2} എന്നതിന്റെ വർഗ്ഗം 2 ആണ്.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
\sqrt{5} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{1}{\sqrt{5}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
\sqrt{5} എന്നതിന്റെ വർഗ്ഗം 5 ആണ്.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-2\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
4 എന്നതിന്റെ സ്ക്വയർ റൂട്ട് കണക്കാക്കുക, 2 ലഭിക്കും.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
3-ന്റെ പവറിലേക്ക് -2 കണക്കാക്കി -8 നേടുക.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(4-\frac{1}{2}\right)\right)}{\frac{3}{4}}
16 എന്നതിന്റെ സ്ക്വയർ റൂട്ട് കണക്കാക്കുക, 4 ലഭിക്കും.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\times \frac{7}{2}\right)}{\frac{3}{4}}
\frac{7}{2} നേടാൻ 4 എന്നതിൽ നിന്ന് \frac{1}{2} കുറയ്ക്കുക.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+7\right)}{\frac{3}{4}}
7 നേടാൻ 2, \frac{7}{2} എന്നിവ ഗുണിക്കുക.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1\right)}{\frac{3}{4}}
-1 ലഭ്യമാക്കാൻ -8, 7 എന്നിവ ചേർക്കുക.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1}{\frac{3}{4}}
\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
\frac{\left(-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1\right)\times 4}{3}
\frac{3}{4} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 ഗുണിക്കുന്നതിലൂടെ \frac{3}{4} കൊണ്ട് -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 എന്നതിനെ ഹരിക്കുക.
\frac{\left(-\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{5}\right)+1\right)\times 4}{3}
1 നേടാൻ -1, -1 എന്നിവ ഗുണിക്കുക.
\frac{\left(-\left(\frac{5\sqrt{2}}{10}+\frac{2\sqrt{5}}{10}\right)+1\right)\times 4}{3}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 2, 5 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 10 ആണ്. \frac{\sqrt{2}}{2}, \frac{5}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{\sqrt{5}}{5}, \frac{2}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+1\right)\times 4}{3}
\frac{5\sqrt{2}}{10}, \frac{2\sqrt{5}}{10} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+\frac{10}{10}\right)\times 4}{3}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 1, \frac{10}{10} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\frac{-\left(5\sqrt{2}+2\sqrt{5}\right)+10}{10}\times 4}{3}
-\frac{5\sqrt{2}+2\sqrt{5}}{10}, \frac{10}{10} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4}{3}
-\left(5\sqrt{2}+2\sqrt{5}\right)+10 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3}
ഏക അംശമായി \frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4 ആവിഷ്ക്കരിക്കുക.
\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10\times 3}
ഏക അംശമായി \frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3} ആവിഷ്ക്കരിക്കുക.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{3\times 5}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 2 ഒഴിവാക്കുക.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{15}
15 നേടാൻ 3, 5 എന്നിവ ഗുണിക്കുക.
\frac{-10\sqrt{2}-4\sqrt{5}+20}{15}
-5\sqrt{2}-2\sqrt{5}+10 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}