x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{\sqrt{73} + 7}{2} \approx 7.772001873
x=\frac{7-\sqrt{73}}{2}\approx -0.772001873
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}-7x+6=12
x-6 കൊണ്ട് x-1 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-7x+6-12=0
ഇരുവശങ്ങളിൽ നിന്നും 12 കുറയ്ക്കുക.
x^{2}-7x-6=0
-6 നേടാൻ 6 എന്നതിൽ നിന്ന് 12 കുറയ്ക്കുക.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-6\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-6\right)}}{2}
-7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49+24}}{2}
-4, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{73}}{2}
49, 24 എന്നതിൽ ചേർക്കുക.
x=\frac{7±\sqrt{73}}{2}
-7 എന്നതിന്റെ വിപരീതം 7 ആണ്.
x=\frac{\sqrt{73}+7}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{7±\sqrt{73}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, \sqrt{73} എന്നതിൽ ചേർക്കുക.
x=\frac{7-\sqrt{73}}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{7±\sqrt{73}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് \sqrt{73} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{73}+7}{2} x=\frac{7-\sqrt{73}}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}-7x+6=12
x-6 കൊണ്ട് x-1 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-7x=12-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
x^{2}-7x=6
6 നേടാൻ 12 എന്നതിൽ നിന്ന് 6 കുറയ്ക്കുക.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=6+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -7-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{7}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-7x+\frac{49}{4}=6+\frac{49}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-7x+\frac{49}{4}=\frac{73}{4}
6, \frac{49}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{7}{2}\right)^{2}=\frac{73}{4}
x^{2}-7x+\frac{49}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{7}{2}=\frac{\sqrt{73}}{2} x-\frac{7}{2}=-\frac{\sqrt{73}}{2}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{73}+7}{2} x=\frac{7-\sqrt{73}}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{7}{2} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}