x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{\log_{\frac{8}{3}}\left(\frac{23}{1440}\right)}{2}\approx -2.108880911
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{\pi n_{1}i}{\ln(\frac{8}{3})}+\frac{\log_{\frac{8}{3}}\left(\frac{23}{1440}\right)}{2}
n_{1}\in \mathrm{Z}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
1440\times \left(\frac{8}{3}\right)^{2x}=23
സമവാക്യം സോൾവ് ചെയ്യാൻ എക്സ്പോണന്റുകളുടെയും ലോഗരിതങ്ങളുടെയും നിയമങ്ങൾ ഉപയോഗിക്കുക.
\left(\frac{8}{3}\right)^{2x}=\frac{23}{1440}
ഇരുവശങ്ങളെയും 1440 കൊണ്ട് ഹരിക്കുക.
\log(\left(\frac{8}{3}\right)^{2x})=\log(\frac{23}{1440})
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും ലോഗരിതം എടുക്കുക.
2x\log(\frac{8}{3})=\log(\frac{23}{1440})
ഒരു പവറിലേക്ക് ഉയർത്തിയ സംഖ്യയുടെ ലോഗരിതം എന്നത് പവറും സംഖ്യയുടെ ലോഗരിതവും തമ്മിലുള്ള ഗുണിതമാണ്.
2x=\frac{\log(\frac{23}{1440})}{\log(\frac{8}{3})}
ഇരുവശങ്ങളെയും \log(\frac{8}{3}) കൊണ്ട് ഹരിക്കുക.
2x=\log_{\frac{8}{3}}\left(\frac{23}{1440}\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) എന്ന ചേഞ്ച്-ഓഫ്-ബേസ് സൂത്രവാക്യം ഉപയോഗിച്ച്.
x=\frac{\ln(\frac{23}{1440})}{2\ln(\frac{8}{3})}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}