പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}+15x-18=2x\left(x+3\right)
x+6 കൊണ്ട് 3x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-18=2x^{2}+6x
x+3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-18-2x^{2}=6x
ഇരുവശങ്ങളിൽ നിന്നും 2x^{2} കുറയ്ക്കുക.
x^{2}+15x-18=6x
x^{2} നേടാൻ 3x^{2}, -2x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+15x-18-6x=0
ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
x^{2}+9x-18=0
9x നേടാൻ 15x, -6x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-9±\sqrt{9^{2}-4\left(-18\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 9 എന്നതും c എന്നതിനായി -18 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-9±\sqrt{81-4\left(-18\right)}}{2}
9 സ്ക്വയർ ചെയ്യുക.
x=\frac{-9±\sqrt{81+72}}{2}
-4, -18 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-9±\sqrt{153}}{2}
81, 72 എന്നതിൽ ചേർക്കുക.
x=\frac{-9±3\sqrt{17}}{2}
153 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3\sqrt{17}-9}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-9±3\sqrt{17}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -9, 3\sqrt{17} എന്നതിൽ ചേർക്കുക.
x=\frac{-3\sqrt{17}-9}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-9±3\sqrt{17}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -9 എന്നതിൽ നിന്ന് 3\sqrt{17} വ്യവകലനം ചെയ്യുക.
x=\frac{3\sqrt{17}-9}{2} x=\frac{-3\sqrt{17}-9}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}+15x-18=2x\left(x+3\right)
x+6 കൊണ്ട് 3x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-18=2x^{2}+6x
x+3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-18-2x^{2}=6x
ഇരുവശങ്ങളിൽ നിന്നും 2x^{2} കുറയ്ക്കുക.
x^{2}+15x-18=6x
x^{2} നേടാൻ 3x^{2}, -2x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+15x-18-6x=0
ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
x^{2}+9x-18=0
9x നേടാൻ 15x, -6x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+9x=18
18 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=18+\left(\frac{9}{2}\right)^{2}
\frac{9}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 9-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{9}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+9x+\frac{81}{4}=18+\frac{81}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{9}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+9x+\frac{81}{4}=\frac{153}{4}
18, \frac{81}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{9}{2}\right)^{2}=\frac{153}{4}
x^{2}+9x+\frac{81}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{9}{2}=\frac{3\sqrt{17}}{2} x+\frac{9}{2}=-\frac{3\sqrt{17}}{2}
ലഘൂകരിക്കുക.
x=\frac{3\sqrt{17}-9}{2} x=\frac{-3\sqrt{17}-9}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{9}{2} കുറയ്ക്കുക.