മൂല്യനിർണ്ണയം ചെയ്യുക
-x\left(2-x\right)^{2}
വികസിപ്പിക്കുക
-x^{3}+4x^{2}-4x
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(2-x\right)\left(\left(1-x\right)^{2}-1\right)
\left(1-x\right)^{2} നേടാൻ 1-x, 1-x എന്നിവ ഗുണിക്കുക.
\left(2-x\right)\left(1-2x+x^{2}-1\right)
\left(1-x\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
\left(2-x\right)\left(-2x+x^{2}\right)
0 നേടാൻ 1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
-4x+2x^{2}+2x^{2}-x^{3}
2-x എന്നതിന്റെ ഓരോ പദത്തെയും -2x+x^{2} എന്നതിന്റെ ഓരോ പദം ഉപയോഗിച്ച് ഗുണിക്കുന്നതിലൂടെ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത പ്രയോഗിക്കുക.
-4x+4x^{2}-x^{3}
4x^{2} നേടാൻ 2x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
\left(2-x\right)\left(\left(1-x\right)^{2}-1\right)
\left(1-x\right)^{2} നേടാൻ 1-x, 1-x എന്നിവ ഗുണിക്കുക.
\left(2-x\right)\left(1-2x+x^{2}-1\right)
\left(1-x\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
\left(2-x\right)\left(-2x+x^{2}\right)
0 നേടാൻ 1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
-4x+2x^{2}+2x^{2}-x^{3}
2-x എന്നതിന്റെ ഓരോ പദത്തെയും -2x+x^{2} എന്നതിന്റെ ഓരോ പദം ഉപയോഗിച്ച് ഗുണിക്കുന്നതിലൂടെ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത പ്രയോഗിക്കുക.
-4x+4x^{2}-x^{3}
4x^{2} നേടാൻ 2x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}