പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-10x+25-9=0
\left(x-5\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-10x+16=0
16 നേടാൻ 25 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
a+b=-10 ab=16
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}-10x+16 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-16 -2,-8 -4,-4
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 16 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-16=-17 -2-8=-10 -4-4=-8
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-8 b=-2
സൊല്യൂഷൻ എന്നത് -10 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x-8\right)\left(x-2\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=8 x=2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-8=0, x-2=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-10x+25-9=0
\left(x-5\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-10x+16=0
16 നേടാൻ 25 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
a+b=-10 ab=1\times 16=16
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+16 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-16 -2,-8 -4,-4
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 16 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-16=-17 -2-8=-10 -4-4=-8
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-8 b=-2
സൊല്യൂഷൻ എന്നത് -10 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-8x\right)+\left(-2x+16\right)
x^{2}-10x+16 എന്നത് \left(x^{2}-8x\right)+\left(-2x+16\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-8\right)-2\left(x-8\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ -2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-8\right)\left(x-2\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-8 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=8 x=2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-8=0, x-2=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-10x+25-9=0
\left(x-5\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-10x+16=0
16 നേടാൻ 25 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 16}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -10 എന്നതും c എന്നതിനായി 16 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 16}}{2}
-10 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-10\right)±\sqrt{100-64}}{2}
-4, 16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-10\right)±\sqrt{36}}{2}
100, -64 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-10\right)±6}{2}
36 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{10±6}{2}
-10 എന്നതിന്‍റെ വിപരീതം 10 ആണ്.
x=\frac{16}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{10±6}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 10, 6 എന്നതിൽ ചേർക്കുക.
x=8
2 കൊണ്ട് 16 എന്നതിനെ ഹരിക്കുക.
x=\frac{4}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{10±6}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 10 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=2
2 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x=8 x=2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}-10x+25-9=0
\left(x-5\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-10x+16=0
16 നേടാൻ 25 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
x^{2}-10x=-16
ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x^{2}-10x+\left(-5\right)^{2}=-16+\left(-5\right)^{2}
-5 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -10-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -5 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-10x+25=-16+25
-5 സ്ക്വയർ ചെയ്യുക.
x^{2}-10x+25=9
-16, 25 എന്നതിൽ ചേർക്കുക.
\left(x-5\right)^{2}=9
x^{2}-10x+25 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-5\right)^{2}}=\sqrt{9}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-5=3 x-5=-3
ലഘൂകരിക്കുക.
x=8 x=2
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5 ചേർക്കുക.