പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(x^{2}-8x+16\right)\left(x+3\right)^{3}\left(x-1\right)=0
\left(x-4\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
\left(x^{2}-8x+16\right)\left(x^{3}+9x^{2}+27x+27\right)\left(x-1\right)=0
\left(x+3\right)^{3} വികസിപ്പിക്കാൻ \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
\left(x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432\right)\left(x-1\right)=0
x^{3}+9x^{2}+27x+27 കൊണ്ട് x^{2}-8x+16 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{6}-30x^{4}-16x^{3}+261x^{2}+216x-432=0
x-1 കൊണ്ട് x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
±432,±216,±144,±108,±72,±54,±48,±36,±27,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ -432 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=1
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432 ലഭിക്കാൻ x-1 ഉപയോഗിച്ച് x^{6}-30x^{4}-16x^{3}+261x^{2}+216x-432 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
±432,±216,±144,±108,±72,±54,±48,±36,±27,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 432 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=-3
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{4}-2x^{3}-23x^{2}+24x+144=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. x^{4}-2x^{3}-23x^{2}+24x+144 ലഭിക്കാൻ x+3 ഉപയോഗിച്ച് x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
±144,±72,±48,±36,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 144 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=-3
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{3}-5x^{2}-8x+48=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. x^{3}-5x^{2}-8x+48 ലഭിക്കാൻ x+3 ഉപയോഗിച്ച് x^{4}-2x^{3}-23x^{2}+24x+144 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
±48,±24,±16,±12,±8,±6,±4,±3,±2,±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്‍റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 48 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=-3
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{2}-8x+16=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്‍റെ ഒരു ഘടകമാണ് x-k. x^{2}-8x+16 ലഭിക്കാൻ x+3 ഉപയോഗിച്ച് x^{3}-5x^{2}-8x+48 വിഭജിക്കുക. ഫലം 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 16}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -8 എന്നതും c എന്നതിനായി 16 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{8±0}{2}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=4
പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.
x=1 x=-3 x=4
കണ്ടെത്തിയ എല്ലാ സൊല്യൂഷനുകളും ലിസ്റ്റ് ചെയ്യുക.