പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-7x+12=6x
x-4 കൊണ്ട് x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-7x+12-6x=0
ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
x^{2}-13x+12=0
-13x നേടാൻ -7x, -6x എന്നിവ യോജിപ്പിക്കുക.
a+b=-13 ab=12
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}-13x+12 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-12 -2,-6 -3,-4
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-12=-13 -2-6=-8 -3-4=-7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-12 b=-1
സൊല്യൂഷൻ എന്നത് -13 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x-12\right)\left(x-1\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=12 x=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-12=0, x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-7x+12=6x
x-4 കൊണ്ട് x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-7x+12-6x=0
ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
x^{2}-13x+12=0
-13x നേടാൻ -7x, -6x എന്നിവ യോജിപ്പിക്കുക.
a+b=-13 ab=1\times 12=12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-12 -2,-6 -3,-4
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-12=-13 -2-6=-8 -3-4=-7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-12 b=-1
സൊല്യൂഷൻ എന്നത് -13 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-12x\right)+\left(-x+12\right)
x^{2}-13x+12 എന്നത് \left(x^{2}-12x\right)+\left(-x+12\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-12\right)-\left(x-12\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-12\right)\left(x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-12 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=12 x=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-12=0, x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-7x+12=6x
x-4 കൊണ്ട് x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-7x+12-6x=0
ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
x^{2}-13x+12=0
-13x നേടാൻ -7x, -6x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 12}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -13 എന്നതും c എന്നതിനായി 12 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 12}}{2}
-13 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-13\right)±\sqrt{169-48}}{2}
-4, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-13\right)±\sqrt{121}}{2}
169, -48 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-13\right)±11}{2}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{13±11}{2}
-13 എന്നതിന്‍റെ വിപരീതം 13 ആണ്.
x=\frac{24}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{13±11}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 13, 11 എന്നതിൽ ചേർക്കുക.
x=12
2 കൊണ്ട് 24 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{13±11}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 13 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=12 x=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}-7x+12=6x
x-4 കൊണ്ട് x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-7x+12-6x=0
ഇരുവശങ്ങളിൽ നിന്നും 6x കുറയ്ക്കുക.
x^{2}-13x+12=0
-13x നേടാൻ -7x, -6x എന്നിവ യോജിപ്പിക്കുക.
x^{2}-13x=-12
ഇരുവശങ്ങളിൽ നിന്നും 12 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-12+\left(-\frac{13}{2}\right)^{2}
-\frac{13}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -13-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{13}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-13x+\frac{169}{4}=-12+\frac{169}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{13}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-13x+\frac{169}{4}=\frac{121}{4}
-12, \frac{169}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{13}{2}\right)^{2}=\frac{121}{4}
x^{2}-13x+\frac{169}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{13}{2}=\frac{11}{2} x-\frac{13}{2}=-\frac{11}{2}
ലഘൂകരിക്കുക.
x=12 x=1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{13}{2} ചേർക്കുക.