x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\sqrt{10}+3\approx 6.16227766
x=3-\sqrt{10}\approx -0.16227766
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x-3\right)^{2}-10+10=10
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 10 ചേർക്കുക.
\left(x-3\right)^{2}=10
അതിൽ നിന്നുതന്നെ 10 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x-3=\sqrt{10} x-3=-\sqrt{10}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-3-\left(-3\right)=\sqrt{10}-\left(-3\right) x-3-\left(-3\right)=-\sqrt{10}-\left(-3\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.
x=\sqrt{10}-\left(-3\right) x=-\sqrt{10}-\left(-3\right)
അതിൽ നിന്നുതന്നെ -3 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=\sqrt{10}+3
\sqrt{10} എന്നതിൽ നിന്ന് -3 വ്യവകലനം ചെയ്യുക.
x=3-\sqrt{10}
-\sqrt{10} എന്നതിൽ നിന്ന് -3 വ്യവകലനം ചെയ്യുക.
x=\sqrt{10}+3 x=3-\sqrt{10}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}