പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-2x+1+2x\left(x-1\right)=0
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+2x^{2}-2x=0
x-1 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-2x+1-2x=0
3x^{2} നേടാൻ x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-4x+1=0
-4x നേടാൻ -2x, -2x എന്നിവ യോജിപ്പിക്കുക.
a+b=-4 ab=3\times 1=3
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 3x^{2}+ax+bx+1 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-3 b=-1
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(3x^{2}-3x\right)+\left(-x+1\right)
3x^{2}-4x+1 എന്നത് \left(3x^{2}-3x\right)+\left(-x+1\right) എന്നായി തിരുത്തിയെഴുതുക.
3x\left(x-1\right)-\left(x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ 3x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-1\right)\left(3x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=1 x=\frac{1}{3}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-1=0, 3x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-2x+1+2x\left(x-1\right)=0
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+2x^{2}-2x=0
x-1 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-2x+1-2x=0
3x^{2} നേടാൻ x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-4x+1=0
-4x നേടാൻ -2x, -2x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി 1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
-4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
16, -12 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-4\right)±2}{2\times 3}
4 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4±2}{2\times 3}
-4 എന്നതിന്‍റെ വിപരീതം 4 ആണ്.
x=\frac{4±2}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{6}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±2}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 2 എന്നതിൽ ചേർക്കുക.
x=1
6 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±2}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 2 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=1 x=\frac{1}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}-2x+1+2x\left(x-1\right)=0
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+2x^{2}-2x=0
x-1 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-2x+1-2x=0
3x^{2} നേടാൻ x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-4x+1=0
-4x നേടാൻ -2x, -2x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-4x=-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{3x^{2}-4x}{3}=-\frac{1}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{2}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{4}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{2}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{2}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{3} എന്നത് \frac{4}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
ലഘൂകരിക്കുക.
x=1 x=\frac{1}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{2}{3} ചേർക്കുക.