പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x നേടാൻ -2x, 4x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ലഭ്യമാക്കാൻ 1, 4 എന്നിവ ചേർക്കുക.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 സ്ക്വയർ ചെയ്യുക.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
x^{2}+2x+5+9=22
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+2x+14=22
14 ലഭ്യമാക്കാൻ 5, 9 എന്നിവ ചേർക്കുക.
x^{2}+2x+14-22=0
ഇരുവശങ്ങളിൽ നിന്നും 22 കുറയ്ക്കുക.
x^{2}+2x-8=0
-8 നേടാൻ 14 എന്നതിൽ നിന്ന് 22 കുറയ്ക്കുക.
a+b=2 ab=-8
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}+2x-8 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,8 -2,4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -8 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+8=7 -2+4=2
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-2 b=4
സൊല്യൂഷൻ എന്നത് 2 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x-2\right)\left(x+4\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=2 x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-2=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x നേടാൻ -2x, 4x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ലഭ്യമാക്കാൻ 1, 4 എന്നിവ ചേർക്കുക.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 സ്ക്വയർ ചെയ്യുക.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
x^{2}+2x+5+9=22
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+2x+14=22
14 ലഭ്യമാക്കാൻ 5, 9 എന്നിവ ചേർക്കുക.
x^{2}+2x+14-22=0
ഇരുവശങ്ങളിൽ നിന്നും 22 കുറയ്ക്കുക.
x^{2}+2x-8=0
-8 നേടാൻ 14 എന്നതിൽ നിന്ന് 22 കുറയ്ക്കുക.
a+b=2 ab=1\left(-8\right)=-8
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-8 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,8 -2,4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -8 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+8=7 -2+4=2
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-2 b=4
സൊല്യൂഷൻ എന്നത് 2 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-2x\right)+\left(4x-8\right)
x^{2}+2x-8 എന്നത് \left(x^{2}-2x\right)+\left(4x-8\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-2\right)+4\left(x-2\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-2\right)\left(x+4\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=2 x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-2=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x നേടാൻ -2x, 4x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ലഭ്യമാക്കാൻ 1, 4 എന്നിവ ചേർക്കുക.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 സ്ക്വയർ ചെയ്യുക.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
x^{2}+2x+5+9=22
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+2x+14=22
14 ലഭ്യമാക്കാൻ 5, 9 എന്നിവ ചേർക്കുക.
x^{2}+2x+14-22=0
ഇരുവശങ്ങളിൽ നിന്നും 22 കുറയ്ക്കുക.
x^{2}+2x-8=0
-8 നേടാൻ 14 എന്നതിൽ നിന്ന് 22 കുറയ്ക്കുക.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി -8 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4+32}}{2}
-4, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{36}}{2}
4, 32 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±6}{2}
36 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±6}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 6 എന്നതിൽ ചേർക്കുക.
x=2
2 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x=-\frac{8}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±6}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=-4
2 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
x=2 x=-4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x നേടാൻ -2x, 4x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 ലഭ്യമാക്കാൻ 1, 4 എന്നിവ ചേർക്കുക.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 സ്ക്വയർ ചെയ്യുക.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
x^{2}+2x+5+9=22
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+2x+14=22
14 ലഭ്യമാക്കാൻ 5, 9 എന്നിവ ചേർക്കുക.
x^{2}+2x=22-14
ഇരുവശങ്ങളിൽ നിന്നും 14 കുറയ്ക്കുക.
x^{2}+2x=8
8 നേടാൻ 22 എന്നതിൽ നിന്ന് 14 കുറയ്ക്കുക.
x^{2}+2x+1^{2}=8+1^{2}
1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+2x+1=8+1
1 സ്ക്വയർ ചെയ്യുക.
x^{2}+2x+1=9
8, 1 എന്നതിൽ ചേർക്കുക.
\left(x+1\right)^{2}=9
x^{2}+2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=3 x+1=-3
ലഘൂകരിക്കുക.
x=2 x=-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.