x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-\frac{1}{12}\approx -0.083333333
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}+4x+4+3\left(x-1\right)\left(x+1\right)=4x\left(x-2\right)
\left(x+2\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}+4x+4+\left(3x-3\right)\left(x+1\right)=4x\left(x-2\right)
x-1 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}+4x+4+3x^{2}-3=4x\left(x-2\right)
x+1 കൊണ്ട് 3x-3 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+4x+4-3=4x\left(x-2\right)
4x^{2} നേടാൻ x^{2}, 3x^{2} എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+4x+1=4x\left(x-2\right)
1 നേടാൻ 4 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
4x^{2}+4x+1=4x^{2}-8x
x-2 കൊണ്ട് 4x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+4x+1-4x^{2}=-8x
ഇരുവശങ്ങളിൽ നിന്നും 4x^{2} കുറയ്ക്കുക.
4x+1=-8x
0 നേടാൻ 4x^{2}, -4x^{2} എന്നിവ യോജിപ്പിക്കുക.
4x+1+8x=0
8x ഇരു വശങ്ങളിലും ചേർക്കുക.
12x+1=0
12x നേടാൻ 4x, 8x എന്നിവ യോജിപ്പിക്കുക.
12x=-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x=\frac{-1}{12}
ഇരുവശങ്ങളെയും 12 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{12}
നെഗറ്റീവ് ചിഹ്നം എക്സ്ട്രാക്റ്റ് ചെയ്യുന്നതിലൂടെ, \frac{-1}{12} എന്ന അംശം -\frac{1}{12} എന്നായി പുനരാലേഖനം ചെയ്യാവുന്നതാണ്.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}