x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-5
x=-15
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x+10\right)^{2}=25
\left(x+10\right)^{2} നേടാൻ x+10, x+10 എന്നിവ ഗുണിക്കുക.
x^{2}+20x+100=25
\left(x+10\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}+20x+100-25=0
ഇരുവശങ്ങളിൽ നിന്നും 25 കുറയ്ക്കുക.
x^{2}+20x+75=0
75 നേടാൻ 100 എന്നതിൽ നിന്ന് 25 കുറയ്ക്കുക.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 20 എന്നതും c എന്നതിനായി 75 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
20 സ്ക്വയർ ചെയ്യുക.
x=\frac{-20±\sqrt{400-300}}{2}
-4, 75 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-20±\sqrt{100}}{2}
400, -300 എന്നതിൽ ചേർക്കുക.
x=\frac{-20±10}{2}
100 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=-\frac{10}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-20±10}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20, 10 എന്നതിൽ ചേർക്കുക.
x=-5
2 കൊണ്ട് -10 എന്നതിനെ ഹരിക്കുക.
x=-\frac{30}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-20±10}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20 എന്നതിൽ നിന്ന് 10 വ്യവകലനം ചെയ്യുക.
x=-15
2 കൊണ്ട് -30 എന്നതിനെ ഹരിക്കുക.
x=-5 x=-15
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
\left(x+10\right)^{2}=25
\left(x+10\right)^{2} നേടാൻ x+10, x+10 എന്നിവ ഗുണിക്കുക.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+10=5 x+10=-5
ലഘൂകരിക്കുക.
x=-5 x=-15
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 10 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}