k എന്നതിനായി സോൾവ് ചെയ്യുക
k=\frac{x^{2}+3}{\left(x+1\right)\left(x+2\right)}
x\neq -2\text{ and }x\neq -1
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}x=\frac{\sqrt{k^{2}+20k-12}-3k}{2\left(k-1\right)}\text{; }x=-\frac{\sqrt{k^{2}+20k-12}+3k}{2\left(k-1\right)}\text{, }&k\neq 1\\x=\frac{1}{3}\text{, }&k=1\end{matrix}\right.
x എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}x=\frac{\sqrt{k^{2}+20k-12}-3k}{2\left(k-1\right)}\text{; }x=-\frac{\sqrt{k^{2}+20k-12}+3k}{2\left(k-1\right)}\text{, }&k\leq -4\sqrt{7}-10\text{ or }\left(k\neq 1\text{ and }k\geq 4\sqrt{7}-10\right)\\x=\frac{1}{3}\text{, }&k=1\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
kx^{2}-x^{2}+3kx+2k-3=0
x^{2} കൊണ്ട് k-1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
kx^{2}+3kx+2k-3=x^{2}
x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
kx^{2}+3kx+2k=x^{2}+3
3 ഇരു വശങ്ങളിലും ചേർക്കുക.
\left(x^{2}+3x+2\right)k=x^{2}+3
k അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(x^{2}+3x+2\right)k}{x^{2}+3x+2}=\frac{x^{2}+3}{x^{2}+3x+2}
ഇരുവശങ്ങളെയും x^{2}+3x+2 കൊണ്ട് ഹരിക്കുക.
k=\frac{x^{2}+3}{x^{2}+3x+2}
x^{2}+3x+2 കൊണ്ട് ഹരിക്കുന്നത്, x^{2}+3x+2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
k=\frac{x^{2}+3}{\left(x+1\right)\left(x+2\right)}
x^{2}+3x+2 കൊണ്ട് x^{2}+3 എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}