പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
b എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(b^{4}\right)^{3}
ഗണനപ്രയോഗം ലഘൂകരിക്കാൻ എക്സ്പോണന്‍റുകളുടെ നിയമങ്ങൾ ഉപയോഗിക്കുക.
b^{4\times 3}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക.
b^{12}
4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(b^{4}\right)^{3-1}\frac{\mathrm{d}}{\mathrm{d}b}(b^{4})
f\left(u\right), u=g\left(x\right) എന്നീ രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകളുടെ കമ്പോസിഷൻ F ആണെങ്കിൽ, അതായത് F\left(x\right)=f\left(g\left(x\right)\right) ആണെങ്കിൽ, തുടർന്ന് F എന്നതിന്‍റെ ഡെറിവേറ്റീവ് എന്നത് x എന്നതുമായി ബന്ധപ്പെട്ട് g എന്നതിന്‍റെ ഡെറിവേറ്റീവിനെ ഗുണിക്കുന്ന u എന്നതുമായി ബന്ധപ്പെട്ട f എന്നതിന്‍റെ ഡെറിവേറ്റീവ് ആയിരിക്കും, അതായത് \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
3\left(b^{4}\right)^{2}\times 4b^{4-1}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
12b^{3}\left(b^{4}\right)^{2}
ലഘൂകരിക്കുക.