പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a^{2}-4a+4=16
\left(a-2\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
a^{2}-4a+4-16=0
ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
a^{2}-4a-12=0
-12 നേടാൻ 4 എന്നതിൽ നിന്ന് 16 കുറയ്ക്കുക.
a+b=-4 ab=-12
സമവാക്യം സോൾവ് ചെയ്യാൻ, a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് a^{2}-4a-12 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-12 2,-6 3,-4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-12=-11 2-6=-4 3-4=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=2
സൊല്യൂഷൻ എന്നത് -4 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(a-6\right)\left(a+2\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(a+a\right)\left(a+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
a=6 a=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ a-6=0, a+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
a^{2}-4a+4=16
\left(a-2\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
a^{2}-4a+4-16=0
ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
a^{2}-4a-12=0
-12 നേടാൻ 4 എന്നതിൽ നിന്ന് 16 കുറയ്ക്കുക.
a+b=-4 ab=1\left(-12\right)=-12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം a^{2}+aa+ba-12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-12 2,-6 3,-4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-12=-11 2-6=-4 3-4=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=2
സൊല്യൂഷൻ എന്നത് -4 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(a^{2}-6a\right)+\left(2a-12\right)
a^{2}-4a-12 എന്നത് \left(a^{2}-6a\right)+\left(2a-12\right) എന്നായി തിരുത്തിയെഴുതുക.
a\left(a-6\right)+2\left(a-6\right)
ആദ്യ ഗ്രൂപ്പിലെ a എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(a-6\right)\left(a+2\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് a-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
a=6 a=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ a-6=0, a+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
a^{2}-4a+4=16
\left(a-2\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
a^{2}-4a+4-16=0
ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
a^{2}-4a-12=0
-12 നേടാൻ 4 എന്നതിൽ നിന്ന് 16 കുറയ്ക്കുക.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി -12 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
-4 സ്ക്വയർ ചെയ്യുക.
a=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4, -12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-\left(-4\right)±\sqrt{64}}{2}
16, 48 എന്നതിൽ ചേർക്കുക.
a=\frac{-\left(-4\right)±8}{2}
64 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
a=\frac{4±8}{2}
-4 എന്നതിന്‍റെ വിപരീതം 4 ആണ്.
a=\frac{12}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, a=\frac{4±8}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 8 എന്നതിൽ ചേർക്കുക.
a=6
2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
a=-\frac{4}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, a=\frac{4±8}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 8 വ്യവകലനം ചെയ്യുക.
a=-2
2 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
a=6 a=-2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
\sqrt{\left(a-2\right)^{2}}=\sqrt{16}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
a-2=4 a-2=-4
ലഘൂകരിക്കുക.
a=6 a=-2
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.