മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{\left(a-2\right)\left(2a+3\right)}{2\left(a-1\right)}
വികസിപ്പിക്കുക
\frac{2a^{2}-a-6}{2\left(a-1\right)}
ക്വിസ്
Polynomial
ഇതിന് സമാനമായ 5 ചോദ്യങ്ങൾ:
( a + 1 - \frac { 3 } { a - 1 } ) - \frac { a - 2 } { 2 a - 2 }
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{\left(a+1\right)\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a-2}{2a-2}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a+1, \frac{a-1}{a-1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(a+1\right)\left(a-1\right)-3}{a-1}-\frac{a-2}{2a-2}
\frac{\left(a+1\right)\left(a-1\right)}{a-1}, \frac{3}{a-1} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{a^{2}-a+a-1-3}{a-1}-\frac{a-2}{2a-2}
\left(a+1\right)\left(a-1\right)-3 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2a-2}
a^{2}-a+a-1-3 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2\left(a-1\right)}
2a-2 ഘടകക്രിയ ചെയ്യുക.
\frac{2\left(a^{2}-4\right)}{2\left(a-1\right)}-\frac{a-2}{2\left(a-1\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a-1, 2\left(a-1\right) എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 2\left(a-1\right) ആണ്. \frac{a^{2}-4}{a-1}, \frac{2}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2\left(a^{2}-4\right)-\left(a-2\right)}{2\left(a-1\right)}
\frac{2\left(a^{2}-4\right)}{2\left(a-1\right)}, \frac{a-2}{2\left(a-1\right)} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{2a^{2}-8-a+2}{2\left(a-1\right)}
2\left(a^{2}-4\right)-\left(a-2\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{2a^{2}-6-a}{2\left(a-1\right)}
2a^{2}-8-a+2 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{2a^{2}-6-a}{2a-2}
2\left(a-1\right) വികസിപ്പിക്കുക.
\frac{\left(a+1\right)\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a-2}{2a-2}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a+1, \frac{a-1}{a-1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(a+1\right)\left(a-1\right)-3}{a-1}-\frac{a-2}{2a-2}
\frac{\left(a+1\right)\left(a-1\right)}{a-1}, \frac{3}{a-1} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{a^{2}-a+a-1-3}{a-1}-\frac{a-2}{2a-2}
\left(a+1\right)\left(a-1\right)-3 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2a-2}
a^{2}-a+a-1-3 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2\left(a-1\right)}
2a-2 ഘടകക്രിയ ചെയ്യുക.
\frac{2\left(a^{2}-4\right)}{2\left(a-1\right)}-\frac{a-2}{2\left(a-1\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a-1, 2\left(a-1\right) എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 2\left(a-1\right) ആണ്. \frac{a^{2}-4}{a-1}, \frac{2}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2\left(a^{2}-4\right)-\left(a-2\right)}{2\left(a-1\right)}
\frac{2\left(a^{2}-4\right)}{2\left(a-1\right)}, \frac{a-2}{2\left(a-1\right)} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{2a^{2}-8-a+2}{2\left(a-1\right)}
2\left(a^{2}-4\right)-\left(a-2\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{2a^{2}-6-a}{2\left(a-1\right)}
2a^{2}-8-a+2 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{2a^{2}-6-a}{2a-2}
2\left(a-1\right) വികസിപ്പിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}