പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
m എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-6m-4+4m^{2}=50
-2m-1 കൊണ്ട് 4-2m ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-6m-4+4m^{2}-50=0
ഇരുവശങ്ങളിൽ നിന്നും 50 കുറയ്ക്കുക.
-6m-54+4m^{2}=0
-54 നേടാൻ -4 എന്നതിൽ നിന്ന് 50 കുറയ്ക്കുക.
4m^{2}-6m-54=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\left(-54\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി -54 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
m=\frac{-\left(-6\right)±\sqrt{36-4\times 4\left(-54\right)}}{2\times 4}
-6 സ്ക്വയർ ചെയ്യുക.
m=\frac{-\left(-6\right)±\sqrt{36-16\left(-54\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=\frac{-\left(-6\right)±\sqrt{36+864}}{2\times 4}
-16, -54 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=\frac{-\left(-6\right)±\sqrt{900}}{2\times 4}
36, 864 എന്നതിൽ ചേർക്കുക.
m=\frac{-\left(-6\right)±30}{2\times 4}
900 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
m=\frac{6±30}{2\times 4}
-6 എന്നതിന്‍റെ വിപരീതം 6 ആണ്.
m=\frac{6±30}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=\frac{36}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, m=\frac{6±30}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6, 30 എന്നതിൽ ചേർക്കുക.
m=\frac{9}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{36}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
m=-\frac{24}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, m=\frac{6±30}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6 എന്നതിൽ നിന്ന് 30 വ്യവകലനം ചെയ്യുക.
m=-3
8 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
m=\frac{9}{2} m=-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-6m-4+4m^{2}=50
-2m-1 കൊണ്ട് 4-2m ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-6m+4m^{2}=50+4
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
-6m+4m^{2}=54
54 ലഭ്യമാക്കാൻ 50, 4 എന്നിവ ചേർക്കുക.
4m^{2}-6m=54
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{4m^{2}-6m}{4}=\frac{54}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
m^{2}+\left(-\frac{6}{4}\right)m=\frac{54}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
m^{2}-\frac{3}{2}m=\frac{54}{4}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
m^{2}-\frac{3}{2}m=\frac{27}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{54}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
m^{2}-\frac{3}{2}m+\left(-\frac{3}{4}\right)^{2}=\frac{27}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{3}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
m^{2}-\frac{3}{2}m+\frac{9}{16}=\frac{27}{2}+\frac{9}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{4} സ്ക്വയർ ചെയ്യുക.
m^{2}-\frac{3}{2}m+\frac{9}{16}=\frac{225}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{27}{2} എന്നത് \frac{9}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(m-\frac{3}{4}\right)^{2}=\frac{225}{16}
m^{2}-\frac{3}{2}m+\frac{9}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(m-\frac{3}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
m-\frac{3}{4}=\frac{15}{4} m-\frac{3}{4}=-\frac{15}{4}
ലഘൂകരിക്കുക.
m=\frac{9}{2} m=-3
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{4} ചേർക്കുക.