പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

20+3x-0.5x^{2}=24
5-0.5x കൊണ്ട് 4+x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
20+3x-0.5x^{2}-24=0
ഇരുവശങ്ങളിൽ നിന്നും 24 കുറയ്ക്കുക.
-4+3x-0.5x^{2}=0
-4 നേടാൻ 20 എന്നതിൽ നിന്ന് 24 കുറയ്ക്കുക.
-0.5x^{2}+3x-4=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-3±\sqrt{3^{2}-4\left(-0.5\right)\left(-4\right)}}{2\left(-0.5\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -0.5 എന്നതും b എന്നതിനായി 3 എന്നതും c എന്നതിനായി -4 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-3±\sqrt{9-4\left(-0.5\right)\left(-4\right)}}{2\left(-0.5\right)}
3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-3±\sqrt{9+2\left(-4\right)}}{2\left(-0.5\right)}
-4, -0.5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{9-8}}{2\left(-0.5\right)}
2, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{1}}{2\left(-0.5\right)}
9, -8 എന്നതിൽ ചേർക്കുക.
x=\frac{-3±1}{2\left(-0.5\right)}
1 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-3±1}{-1}
2, -0.5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{2}{-1}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±1}{-1} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, 1 എന്നതിൽ ചേർക്കുക.
x=2
-1 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
x=-\frac{4}{-1}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±1}{-1} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
x=4
-1 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
x=2 x=4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
20+3x-0.5x^{2}=24
5-0.5x കൊണ്ട് 4+x ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-0.5x^{2}=24-20
ഇരുവശങ്ങളിൽ നിന്നും 20 കുറയ്ക്കുക.
3x-0.5x^{2}=4
4 നേടാൻ 24 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
-0.5x^{2}+3x=4
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-0.5x^{2}+3x}{-0.5}=\frac{4}{-0.5}
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഗുണിക്കുക.
x^{2}+\frac{3}{-0.5}x=\frac{4}{-0.5}
-0.5 കൊണ്ട് ഹരിക്കുന്നത്, -0.5 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-6x=\frac{4}{-0.5}
-0.5 എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 3 ഗുണിക്കുന്നതിലൂടെ -0.5 കൊണ്ട് 3 എന്നതിനെ ഹരിക്കുക.
x^{2}-6x=-8
-0.5 എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 4 ഗുണിക്കുന്നതിലൂടെ -0.5 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
-3 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -3 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-6x+9=-8+9
-3 സ്ക്വയർ ചെയ്യുക.
x^{2}-6x+9=1
-8, 9 എന്നതിൽ ചേർക്കുക.
\left(x-3\right)^{2}=1
x^{2}-6x+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-3=1 x-3=-1
ലഘൂകരിക്കുക.
x=4 x=2
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.