x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-2
x=\frac{1}{4}=0.25
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)=8-x
\left(3x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)-8=-x
ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)-8+x=0
x ഇരു വശങ്ങളിലും ചേർക്കുക.
9x^{2}+6x+1+\left(-5x-5\right)\left(x-1\right)-8+x=0
x+1 കൊണ്ട് -5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x^{2}+6x+1-5x^{2}+5-8+x=0
x-1 കൊണ്ട് -5x-5 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+6x+1+5-8+x=0
4x^{2} നേടാൻ 9x^{2}, -5x^{2} എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+6x+6-8+x=0
6 ലഭ്യമാക്കാൻ 1, 5 എന്നിവ ചേർക്കുക.
4x^{2}+6x-2+x=0
-2 നേടാൻ 6 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
4x^{2}+7x-2=0
7x നേടാൻ 6x, x എന്നിവ യോജിപ്പിക്കുക.
a+b=7 ab=4\left(-2\right)=-8
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 4x^{2}+ax+bx-2 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,8 -2,4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -8 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+8=7 -2+4=2
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-1 b=8
സൊല്യൂഷൻ എന്നത് 7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(4x^{2}-x\right)+\left(8x-2\right)
4x^{2}+7x-2 എന്നത് \left(4x^{2}-x\right)+\left(8x-2\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(4x-1\right)+2\left(4x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(4x-1\right)\left(x+2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 4x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{1}{4} x=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 4x-1=0, x+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)=8-x
\left(3x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)-8=-x
ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)-8+x=0
x ഇരു വശങ്ങളിലും ചേർക്കുക.
9x^{2}+6x+1+\left(-5x-5\right)\left(x-1\right)-8+x=0
x+1 കൊണ്ട് -5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x^{2}+6x+1-5x^{2}+5-8+x=0
x-1 കൊണ്ട് -5x-5 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+6x+1+5-8+x=0
4x^{2} നേടാൻ 9x^{2}, -5x^{2} എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+6x+6-8+x=0
6 ലഭ്യമാക്കാൻ 1, 5 എന്നിവ ചേർക്കുക.
4x^{2}+6x-2+x=0
-2 നേടാൻ 6 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
4x^{2}+7x-2=0
7x നേടാൻ 6x, x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-2\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 7 എന്നതും c എന്നതിനായി -2 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-7±\sqrt{49-4\times 4\left(-2\right)}}{2\times 4}
7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-7±\sqrt{49-16\left(-2\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{49+32}}{2\times 4}
-16, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{81}}{2\times 4}
49, 32 എന്നതിൽ ചേർക്കുക.
x=\frac{-7±9}{2\times 4}
81 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-7±9}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-7±9}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7, 9 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{4}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{16}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-7±9}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=-2
8 കൊണ്ട് -16 എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{4} x=-2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)=8-x
\left(3x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
9x^{2}+6x+1-5\left(x+1\right)\left(x-1\right)+x=8
x ഇരു വശങ്ങളിലും ചേർക്കുക.
9x^{2}+6x+1+\left(-5x-5\right)\left(x-1\right)+x=8
x+1 കൊണ്ട് -5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x^{2}+6x+1-5x^{2}+5+x=8
x-1 കൊണ്ട് -5x-5 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+6x+1+5+x=8
4x^{2} നേടാൻ 9x^{2}, -5x^{2} എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+6x+6+x=8
6 ലഭ്യമാക്കാൻ 1, 5 എന്നിവ ചേർക്കുക.
4x^{2}+7x+6=8
7x നേടാൻ 6x, x എന്നിവ യോജിപ്പിക്കുക.
4x^{2}+7x=8-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
4x^{2}+7x=2
2 നേടാൻ 8 എന്നതിൽ നിന്ന് 6 കുറയ്ക്കുക.
\frac{4x^{2}+7x}{4}=\frac{2}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{7}{4}x=\frac{2}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{7}{4}x=\frac{1}{2}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\frac{1}{2}+\left(\frac{7}{8}\right)^{2}
\frac{7}{8} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{7}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{7}{8} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{1}{2}+\frac{49}{64}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{7}{8} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{81}{64}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{2} എന്നത് \frac{49}{64} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{7}{8}\right)^{2}=\frac{81}{64}
x^{2}+\frac{7}{4}x+\frac{49}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{7}{8}=\frac{9}{8} x+\frac{7}{8}=-\frac{9}{8}
ലഘൂകരിക്കുക.
x=\frac{1}{4} x=-2
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{8} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}