പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
വികസിപ്പിക്കുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
\left(3a^{2}-b^{2}\right)^{2} വികസിപ്പിക്കാൻ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
\left(a^{2}-3b^{2}\right)^{2} വികസിപ്പിക്കാൻ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
a^{4}-6a^{2}b^{2}+9b^{4} എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
8a^{4} നേടാൻ 9a^{4}, -a^{4} എന്നിവ യോജിപ്പിക്കുക.
8a^{4}+b^{4}-9b^{4}
0 നേടാൻ -6a^{2}b^{2}, 6a^{2}b^{2} എന്നിവ യോജിപ്പിക്കുക.
8a^{4}-8b^{4}
-8b^{4} നേടാൻ b^{4}, -9b^{4} എന്നിവ യോജിപ്പിക്കുക.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
\left(3a^{2}-b^{2}\right)^{2} വികസിപ്പിക്കാൻ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
\left(a^{2}-3b^{2}\right)^{2} വികസിപ്പിക്കാൻ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
a^{4}-6a^{2}b^{2}+9b^{4} എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
8a^{4} നേടാൻ 9a^{4}, -a^{4} എന്നിവ യോജിപ്പിക്കുക.
8a^{4}+b^{4}-9b^{4}
0 നേടാൻ -6a^{2}b^{2}, 6a^{2}b^{2} എന്നിവ യോജിപ്പിക്കുക.
8a^{4}-8b^{4}
-8b^{4} നേടാൻ b^{4}, -9b^{4} എന്നിവ യോജിപ്പിക്കുക.